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Conte Center at UCI

* NIMH-funded (2013-2018, 2019-2024)

* Center studies the impact of early life experience (especially unpredictability)
on adolescent/adult mental health
* Four related projects addressing this common theme
* Animal model (rodent) — experiments
* Humans
e Infants/Children (prenatal — age 7)
* Adolescents/Young Adults (ages 16-21)
* Marine veterans (young adults)
* Wide range of data types
* Emotional measures (survey questionnaires)
* Behavior measures (e.g., risk taking tasks, videos)
* Brain imaging
* @Genetics
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A few thoughts on “Big Data”

* There are many terms associated with data analysis
these days. Examples include:

— Statistics

— Machine Learning (ML)

— Data Science

— Big Data

— Artificial Intelligence (AI)

— Deep Learning (Deep Neural Networks)

* This has proven confusing and led to many attempts to
clarify ...
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A Venn Diagram to Explain 1t All

One of the first by Drew Conway
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Terminology

A humorous take credited to Joel Grus:

Data
Science

That GuyWho |
Stole Your
Identity Online

Thesis
Advisor
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Terminology

The (stereotyped) view of AI/ML from Statistics

— AI/ML = CS discovering the power of probability and statistical
models to solve problems / analyze data

— ML folks are not concerned about where the data come from
The (stereotyped) view of Statistics from AI/ML

— Statistics 1s focused on mathematical theories for data analysis

— They think primarily about interpretation / testing of models

— Can’t handle very large data sets

There are elements of truth 1n these stereotypes, but ....

Main point for me is that there are a wide range of tools
available to help scientists make sense of their data

Use best tool for the task at hand
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The role of unpredictability

Experimental protocol in the rodent animal model

* Top cage=normal environment (CTL) = - e
* Bottom cage=limited bedding and i ‘
nesting (LBN) |

Pups randomly assigned to CTL/LBN
cages for postnatal days 2-9

Then all returned to CTL environments ~ = g::\h

Observe very different maternal behavior S
in the LBN cages (fragmented and unpredictable behavior)

Offspring that spent time in LBN cages are vulnerable to emotional/cognitive
problems
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The role of fragmentation/
unpredictability
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Different patterns of behavior, e.g., LLLW

* Licking/grooming occurs in shorter bouts in the }
LBN cages

Different outcomes as pups mature, e.g., LBN group

consumes less sucrose (a preferred item)
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But does this happen 1n humans?

* Pre-natal and post-natal maternal questionnaires on depressive symptoms
* Median split both measures (low symptoms vs high symptoms)
* Examine child mental development (index measured at 1 year of age)
e Children experiencing consistent maternal environment (symptoms)
outperform those with inconsistent environments
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Conte Center goals

* (Can we characterize fragmentation and unpredictability of early
life environment using the same or similar measures across
species

* Study the association between unpredictability and child,
adolescent, and ultimately adult outcomes

* Use rodent models to try and understand the mechanism through
which this association may develop

* Brain imaging
* Genetics (epigenetics)
* Try to validate mechanistic theories by examining human data
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Conte Center human studies

* Conte Center 1.0 leveraged an existing cohort of mother-child
dyads and recruited a second cohort of mother-child dyads

* Extensive data collection

* Conte Center 2.0 is collecting additional data on both cohorts
and also studying a cohort of Marines

Fig 1. Project 3 Timeline of Assessments

Previously Collected Conte Center Funded Conte Center Proposed

o1 /R d Pleasure/Reward & Pleasure/Reward, Pleasure/Reward,
gt Brain Anhedonia & Brain Anhedonia & Brain

Pregnancy Birth Infancy Childhood Early Adolescence Late Adolescence

Child

Emotional FRAG & Home FRAG

Maternal

Sensory FRAG
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Assessing predictability of mom

* One common data type across species 1s behaviors recorded during videotaped
interactions between mom/offspring
* Rodents

* Observed for 50-minute periods
(2x/day for 8 days)

* Records of start and stop of different
behaviors (licking/grooming, carrying,
eating, nursing, nest building, off pups,
self-grooming)

* Humans

* Observed 10-minute play sessions
of mother and child (at 6mo, 12mo)

* Records of many different
behaviors

* Focus on sensory input
(auditory, tactile, visual)
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Assessing predictability - rodents

* Rodents
* Observed for 50-minute periods (2x/day for 8 days)
* Records of start and stop of different behaviors
(licking/grooming, carrying, eating, nursing, nest building, off pups,
self-grooming)
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Assessing predictability - rodents

Rodents

Transition Counts Transition Probabilities
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Entropy

Entropy (Shannon entropy) is a measure of randomness / unpredictability
* Consider a random quantity with four possible outcomes (a, b, c, d)
* We see 10 observations of this random quantity:
« Example 1: b,a,a,c,b,a,b,d,c,c
* And then we see 10 observations from a second random variable with the same
possible outcomes
« Example?2: a,a,a,a,a,a,a,a,aa
* And then a 3" random variable
« Example3: d,c,c,d,d,d,d,c,d,c
* These three examples have very different behavior

Entropy is one way to characterize the differences

* Example 1 — quite random (30% a, 30% b, 30% c, 10% d) —> entropy = 1.90

« Example 2 - perfectly predictable (100% a) =2 entropy = 0.00

* Example 3 - somewhat predictable (0% a, 0% b, 50% c, 50% d) => entropy = 1.00

UCI Department of Statistics

Donald Bren School of Information & Computer Sciences



Entropy

Entropy of a random variable or a distribution
H = - X p, log p; where p; is the probability of seeing outcome 1

In our case, we are interested in the entropy of a sequence of behaviors or
entropy of a random process X,, X;, X,, .... Xy where X, is the t-th observed
behavior

At least two approaches ....

1. Build a probability model for X, conditional on previous observations
(e.g., a 1’*-order Markov chain model) and compute entropy as limiting
value of entropy of the conditional distribution
Computation straightforward
*  May be sensitive to choice of model

2. Think about a coding or data compression approach to describing the
sequence of behaviors. Theoretical result relates entropy to the
compression rate.

*  Computation more complex
*  Does not require a model assumption
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Entropy

* Examples of entropy for 1-st order Markov chain behavior

High Entropy Case, Entropy Rate: 2.8934 Med. Entropy Case, Entropy Rate: 1.6287 Low Entropy Case, Entropy Rate: 0.3293

oo [1]
T T T T T T T T T T T T T T T T
State 1 State 2 State 3 State 4 Siate 5 Stale 8 State 7 State B State 1 State 2 State 3 State 4 State 5 State 8 Stale 7 State 8 State 1 State 2 State 3 State 4 State 5 State 8 State 7 Stale 8

UCI Department of Statistics

Donald Bren School of Information & Computer Sciences



High Entropy Rate

Medium Entropy Rate

Low Entropy Rate

Entropy

* Simulation study of different approaches to estimating the entropy rate
(Vegetabile et al., 2019)

* Rows= Different entropy levels; Columns= Different estimation methods
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Assessing predictability - rodents

Rodents

Transition Probabilities
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Assessing predictability - humans

Initial attempt based on a large number of recorded behaviors
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Assessing predictability - humans

For one mother-child pair, record of the three sensory channels
being engaged/not

Mother ID: 816

way 1 [T T TR

Tactile -

Visual =

[ T T T T T
0 50 100 150 200 250 300 350 400 450 500 550 600
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Assessing predictability of mom

* Define behavioral states with respect to which sensory channels are in use
* For example:
* Mother speaking

and touching\ S | II H
e Mother looking N\ “ I

Auditory/Tactile =
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Assessing predictability of mom

* Summarize by looking at transitions between states (counts, probabilities)

From Action

A Transition Counts B Transition Probabilities
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Assessing predictability of mom

* Computed the entropy rate for each mother assuming first-order Markov process
* Also considered alternative models

Empirical Density of Entropy Rate Values

Frequency

0.0 0.5 1.0 15

Entropy Rate
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Reliability of the entropy measure

* Entropy computed from first five minutes of the 10-minute play session is
correlated with entropy computed from the second five minutes (r = 0.5)

* Entropy computed from mother-child dyad at 6 months 1s correlated with mother-
child dyad at 12 months (r=0.4)
* Mothers with two children in the studies have similar entropy (r = 0.55)
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0.3
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 11 1.2

» Now have entropy from 2™ cohort ... similar results and relationships

UCI Department of Statistics

Donald Bren School of Information & Computer Sciences



Other measures of unpredictability

 Household chaos

* Maternal mood

* Mood scales completed by mothers at 15, 20, 25, 30, 35 weeks prenatally and
several time points postnatally

* Scales measured: depressive symptoms, state anxiety, pregnancy-specific
anxiety, perceived stress

* Alternative approach — examined consistency / randomness of item responses
within each scale at a given time point

* Averaged this measure across scales and time points -> maternal mood
entropy
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Effects of unpredictability 1n rodents

*  We take the same steps to measure entropy in rodent mothers
* Mothers in LBN cages have much higher entropy (i.e., are less predictable)
* Their offspring are vulnerable to emotional/cognitive issues
* Offspring also demonstrate much reduced interest in
pleasurable activities (e.g., sugar consumption) = anhedonia
* Other signs of anhedonia as well
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Effects of unpredictability 1n humans?

* Maternal behavioral entropy at 1 yr visit 1s associated with child’s
cognitive performance at 2 years (and later in life)
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Effects of unpredictability 1n humans?

* Maternal behavioral entropy 1s associated with child self-control in
two very different cohorts (Irvine, CA and Turku, Finland)

Child's Self-Control at 12 Months

35 ——— Turku,r=-0.28 .
Irvine, r = -0.16 &

I [ I [ I ]
0.2 04 0.6 0.8 1.0 1.2

More Predictable Less Predictable
Maternal Behavioral Entropy Rate
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Effects of unpredictability 1n humans?

Infant Fear

Maternal behavioral entropy is associated with child outcomes
across different ages

Here we show patterns for internalizing behaviors (fear/anxiety)
True also for effortful control across ages
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Translation beyond childhood

* New project with marine veterans for the last 5 years
* Relate early life environment to anhedonia

* Relate early life environment and anhedonia with
vulnerability to PTSD and other mental 1llness

* Challenge —
How do we assess early life environment for these young adults?
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A self-report measure of
childhood unpredictability

* Questionnaire of Unpredictability in Childhood (QUIC)
(Glynn et al. 2018)

* 38 1items organized 1n 5 subscales (parental predictability, parental
environment, parental monitoring, physical environment, safety)
Examples:

There were often people coming and going in my house that I did not expect to be there
I experienced changes in my custody arrangement

I often wondered whether or not one of my parents would come home at the end of the day
e Tested on 3 cohorts
* Adult females (mothers of adolescents) (n=116)

* Adult males (marines) (n=95)
* Adolescents (n=175)
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A self-report measure of
childhood unpredictability

Good psychometric properties
* Test-retest reliability (r=.92)
* Internal consistency (alpha=.84 - .92)
* Adolescent data validated by prospective reports for some items (e.g., moving)
* QUIC correlated with other measures of traumatic/stressful life events

 Adolescent QUIC scores correlate with
maternal behavioral entropy (r=.23)

* QUIC predicts mental health risk (anhedonia, depression, anxiety)
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Effect of Unpredictability in Marines

<55 ¢
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FRAG (QUIC quartiles)
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A self-report measure of
childhood unpredictability
for clinical use

The QUIC has proven
to be a useful scale for
research

Adopted by other labs

But of limited use for
clinical application

We have developed
a 5-1tem version
(more on this later)
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Exploring mechanism - methylomics

* Environment can effect expression of genes
* One mechanism 1s DNA methylation

* CpG sites (cytosine (C) follow by guanine (G)) can be
methylated (a methyl group 1s added)

* This can change the expression of the associated gene

* We explore whether methylomics may be a way in which
carly-life adversity (unpredictability) leaves a “mark”™

* One challenge that has been observed in methylomic analyses
1s that there 1s considerable inter-individual variation in
methylation levels
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Methylomics 1n rodents

An initial analysis of rodent data incorporating day 2 and day 10
samples distinguishes age but not CTL/LBN
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Methylomics 1n rodents

 (Considerable inter-individual variation

* An alternative analysis focuses on intra-individual change in
methylation (log (P10 / p2))
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Methylomics 1n humans

An 1initial analysis of human data incorporating newborn and 12-
month samples distinguishes age (which 1s not very interesting)
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Methylomics 1n humans
Apply the same approach that was useful 1n the rodents

Consider the delta/change in methylation over the two time points

Plot a shows that the

first principal component

of the delta methylation scores
1s essential average change

a

PC1(8.6%)

So we use average change

Plot b shows that average
change in methylation 1s
associated with effortful
control 1n children

Plots c¢,d show that individual
methylation measures are not
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Methylomics 1n humans

Established literature (earlier in the talk) that unpredictability 1s
associated with outcomes 1in humans (figure a below)

Previous slide shows methylomics 1s associated with outcomes 1n
humans (figure b repeated here)
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Animal studies found that methylomics could distinguish control and
LBN rodents

For humans, average change in methylation and unpredictability are
not directly related (r =-0.07)
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Methylomics 1n humans

Recall that for animal studies, methylomics could distinguish control
and LBN rodents (unpredictability), and unpredictability was
associated with child/adolescent outcomes

* Other studies (not discussed here) show that unpredictability
appears to create a “vulnerability” to future adversity

For humans:

* Average change in methylation and unpredictability are only
weakly related (r =-0.07)

* We explore whether unpredictability and methylomics may
interact 1n their impacts on children
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Methylomics 1n humans

* Some preliminary evidence that unpredictability may impact the
relationship of methylation and outcomes 1n a sex-dependent way,

1.e., an Interaction
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Conte Center Next Steps

* Next steps

* Funding from a CA Precision Medicine Award to investigate
effects of early-life unpredictability in population

* Partnerships with clinics

* Data on thousands of children (QUICS and outcomes)
* Methylomics

* Validation sample from the Precision Medicine study

* Partnership with Finland collaborators
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Summary

Novel early-life experience (maternal unpredictability) developed in a
rodent model

Interrogated through a variety of data analysis approaches

* Application of entropy (across species) to characterize
unpredictability

* Standard statistical analysis (correlation/regression) associating
unpredictability with a range of outcomes

* High-dimensional AI/ML approaches to explore genetic markers
or impact of unpredictability

Importance of collaboration and team science
Contact: sternh(@uci.edu
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