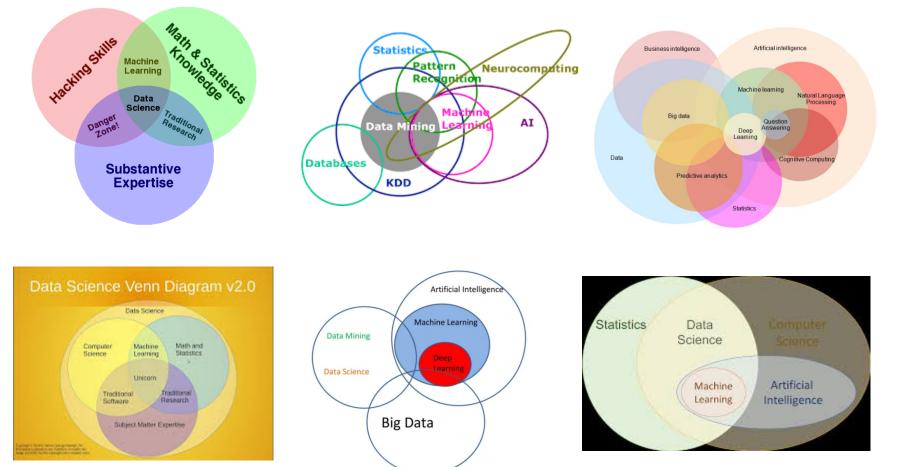
Integrating Data Types to Understand the Impact of Early-Life Experiences

> Big Data Training for Cancer Research July 22, 2025

Hal Stern Department of Statistics <u>sternh@uci.edu</u>

Conte Center at UCI

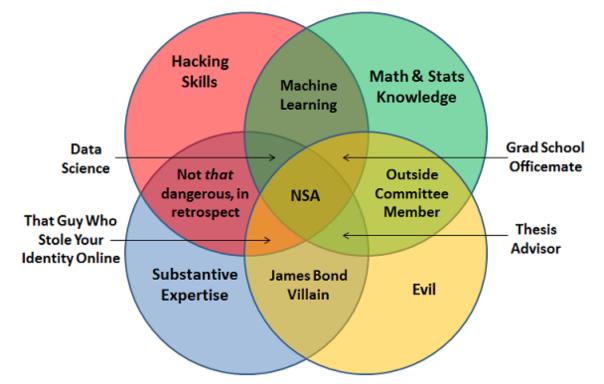

- NIMH-funded (2013-2018, 2019-2024)
 - Center studies the impact of early life experience (especially unpredictability) on adolescent/adult mental health
 - Four related projects addressing this common theme
 - Animal model (rodent) experiments
 - Humans
 - Infants/Children (prenatal age 7)
 - Adolescents/Young Adults (ages 16-21)
 - Marine veterans (young adults)
 - Wide range of data types
 - Emotional measures (survey questionnaires)
 - Behavior measures (e.g., risk taking tasks, videos)
 - Brain imaging
 - Genetics

A few thoughts on "Big Data"

- There are many terms associated with data analysis these days. Examples include:
 - Statistics
 - Machine Learning (ML)
 - Data Science
 - Big Data
 - Artificial Intelligence (AI)
 - Deep Learning (Deep Neural Networks)
- This has proven confusing and led to many attempts to clarify ...

A Venn Diagram to Explain it All

One of the first by Drew Conway



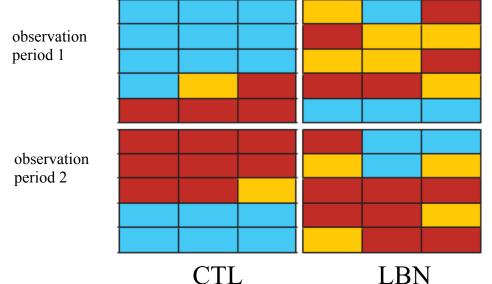
UCI Department of Statistics

Donald Bren School of Information & Computer Sciences

Terminology

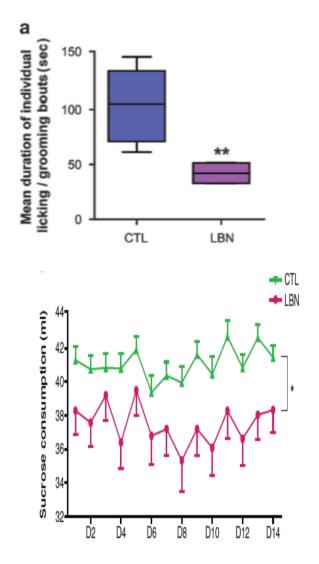
A humorous take credited to Joel Grus:

Terminology

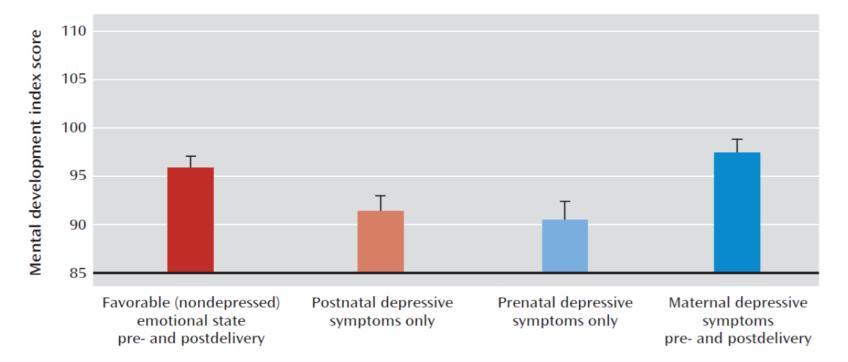

- The (stereotyped) view of AI/ML from Statistics
 - AI/ML = CS discovering the power of probability and statistical models to solve problems / analyze data
 - ML folks are not concerned about where the data come from
- The (stereotyped) view of Statistics from AI/ML
 - Statistics is focused on mathematical theories for data analysis
 - They think primarily about interpretation / testing of models
 - Can't handle very large data sets
- There are elements of truth in these stereotypes, but
- Main point for me is that there are a wide range of tools available to help scientists make sense of their data
- Use best tool for the task at hand

The role of unpredictability

- Experimental protocol in the rodent animal model
 - Top cage=normal environment (CTL)
 - Bottom cage=limited bedding and nesting (LBN)
- Pups randomly assigned to CTL/LBN cages for postnatal days 2-9
- Then all returned to CTL environments
- Observe very different maternal behavior in the LBN cages (fragmented and unpredictable behavior)
- Offspring that spent time in LBN cages are vulnerable to emotional/cognitive problems



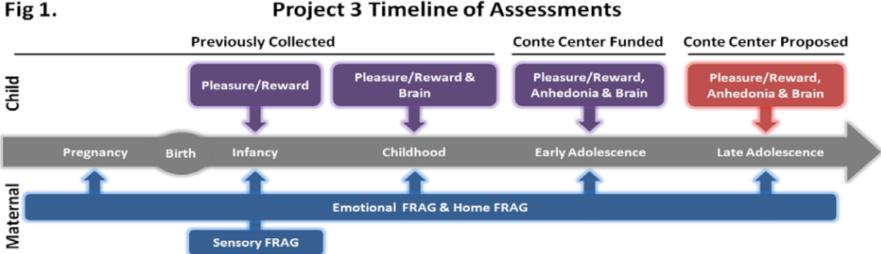
The role of fragmentation/ unpredictability


• Observed and recorded maternal behavior

- Graph shows behavior in 1minute blocks
- Different patterns of behavior, e.g.,
 - Licking/grooming occurs in shorter bouts in the LBN cages
- Different outcomes as pups mature, e.g., LBN group consumes less sucrose (a preferred item)

But does this happen in humans?

- Pre-natal and post-natal maternal questionnaires on depressive symptoms
- Median split both measures (low symptoms vs high symptoms)
- Examine child mental development (index measured at 1 year of age)
 - Children experiencing consistent maternal environment (symptoms) outperform those with inconsistent environments

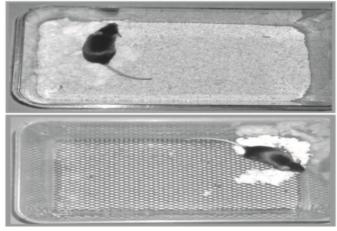


Conte Center goals

- Can we characterize fragmentation and unpredictability of early life environment using the same or similar measures across species
- Study the association between unpredictability and child, adolescent, and ultimately adult outcomes
- Use rodent models to try and understand the mechanism through which this association may develop
 - Brain imaging
 - Genetics (epigenetics)
- Try to validate mechanistic theories by examining human data

Conte Center human studies

- Conte Center 1.0 leveraged an existing cohort of mother-child dyads and recruited a second cohort of mother-child dyads
- Extensive data collection ullet
- Conte Center 2.0 is collecting additional data on both cohorts • and also studying a cohort of Marines

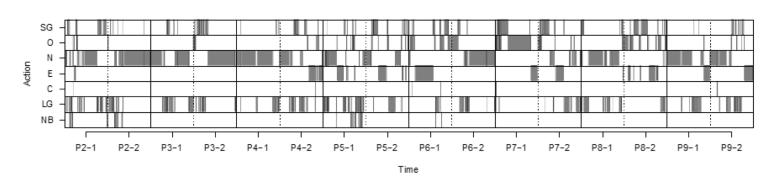


Project 3 Timeline of Assessments

UCI Department of Statistics

Donald Bren School of Information & Computer Sciences

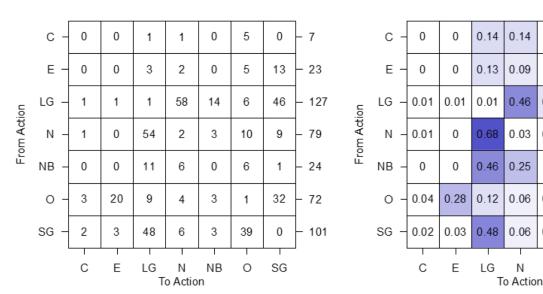
- One common data type across species is behaviors recorded during videotaped interactions between mom/offspring
 - Rodents
 - Observed for 50-minute periods (2x/day for 8 days)
 - Records of start and stop of different behaviors (licking/grooming, carrying, eating, nursing, nest building, off pups, self-grooming)
 - Humans
 - Observed 10-minute play sessions of mother and child (at 6mo, 12mo)
 - Records of many different behaviors
 - Focus on sensory input (auditory, tactile, visual)



Assessing predictability - rodents

- Rodents
 - Observed for 50-minute periods (2x/day for 8 days)
 - Records of start and stop of different behaviors (licking/grooming, carrying, eating, nursing, nest building, off pups, self-grooming)

Rat 1


Rat 1

SG	п 1		990 20	1111		÷	**	-	-	22	-	9	2 1	÷.	111		1		•	1	e			<u>۲</u>		2000	135	- 25	111	194	32	- 99	222			9.9			1 22	11	•	- 11		1999	-	22	tit	2	17	- 75	9.991
0	-	- 99	dò	38	ŧł.	1	1111	8		60		1		}	133	100	• •		11				69	i.	4		0.000		0.90	99-6	-	10004	10	-	- 6	190	000	0000	ieid		99			de	000-0	409	•	66	1		
Ν	- 👳	• e	0000	68	-		6.080	8	-001	18		00	.99	000		n ii		.000	00-00	0	٠		100	٠	- 946			ŧ.	1.00				0	000	000				i,	000	19-190	e 66 (99999		91			6 699		9999	
Е	- 33	1.0	1								8									*			39		111		é.	00	ŵ.			ġ.	- 93						é.		N.				6.94	i deni			٠		
С	-						12 2				13		18					2000			8				3	-			-	۰.	1	ė.	- 13		1	de					1		88	1111							
LG	-pile		000	débie	000	東飯	• •	ióń.	ai i	i ù	hhi	10-00	á de la de l	000		ideia	ŵ.	shiri	-	665 sk	ėė (€. 6		-900	eije -	4		666		ė	6è	1		11.1		è	é		(édé	éé (int d	00000	ėė.			éá	- áb		ééé é	1000
NB		è.66		-		-àé i														÷		000	÷ •	ió à	60						ó –																				

Time Index

Assessing predictability - rodents

Rodents •

Transition Counts

Transition Probabilities

0

0

0.11

0.04

0

0.04

0.03

NB

Ν

0.71

0.22 0.57

0.05 0.36

0.13 0.11

0.01 0.44

0.04

0

SG

0.25

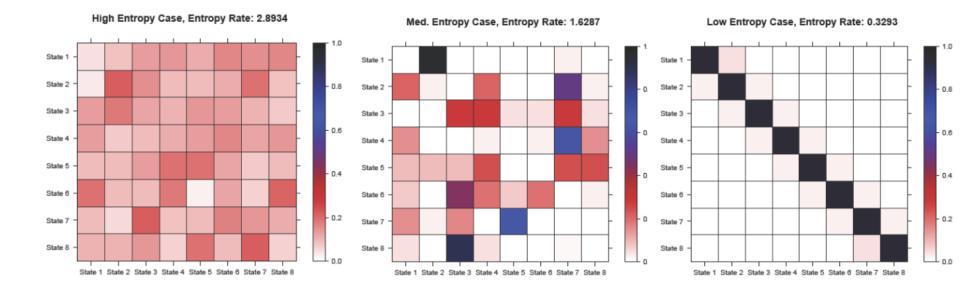
0.39

0

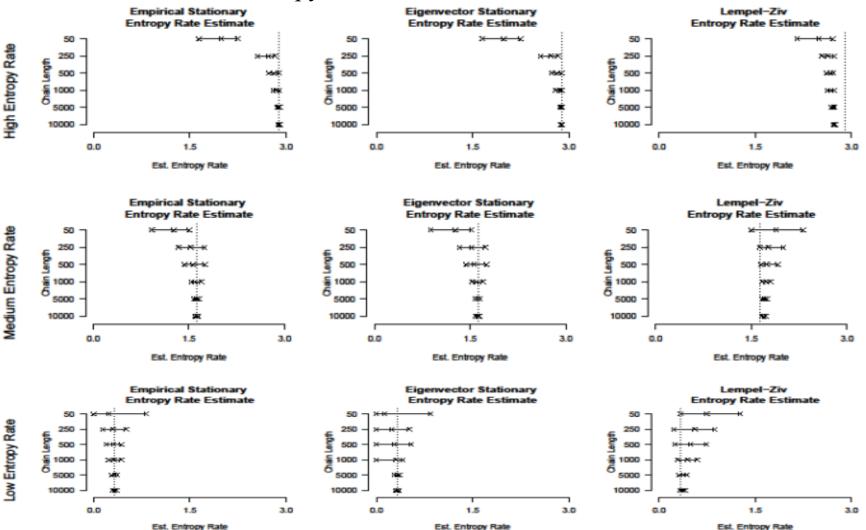
0

- Entropy (Shannon entropy) is a measure of randomness / unpredictability
- Consider a random quantity with four possible outcomes (a, b, c, d)
- We see 10 observations of this random quantity:
 - Example 1: b, a, a, c, b, a, b, d, c, c
- And then we see 10 observations from a second random variable with the same possible outcomes
 - Example 2: a, a, a, a, a, a, a, a, a, a
- And then a 3rd random variable
 - Example 3: d, c, c, d, d, d, d, c, d, c
- These three examples have very different behavior

Entropy is one way to characterize the differences

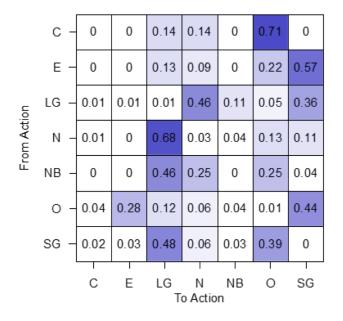

- Example 1 quite random (30% a, 30% b, 30% c, 10% d) \rightarrow entropy = 1.90
- Example 2 perfectly predictable (100% a) \rightarrow entropy = 0.00
- Example 3 somewhat predictable (0% a, 0% b, 50% c, 50% d) \rightarrow entropy = 1.00

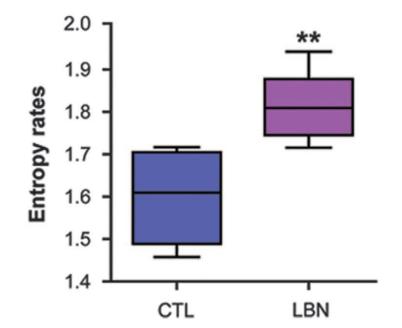
UCI Department of Statistics


Donald Bren School of Information & Computer Sciences

- Entropy of a random variable or a distribution $H = -\Sigma p_i \log p_i$ where p_i is the probability of seeing outcome i
- In our case, we are interested in the entropy of a sequence of behaviors or entropy of a random process $X_0, X_1, X_2, \dots, X_T$ where X_t is the t-th observed behavior
- At least two approaches
 - Build a probability model for X_t conditional on previous observations (e.g., a 1st-order Markov chain model) and compute entropy as limiting value of entropy of the conditional distribution
 - Computation straightforward
 - May be sensitive to choice of model
 - 2. Think about a coding or data compression approach to describing the sequence of behaviors. Theoretical result relates entropy to the compression rate.
 - Computation more complex
 - Does not require a model assumption

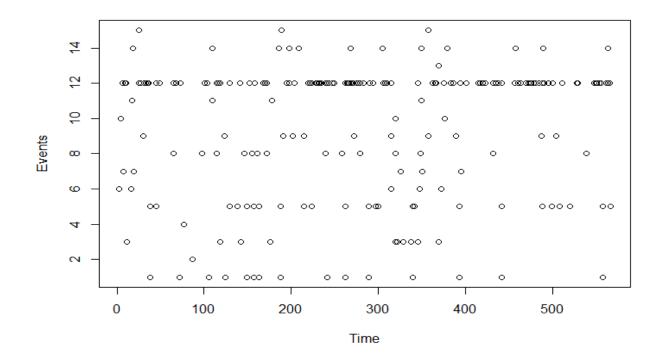
• Examples of entropy for 1-st order Markov chain behavior

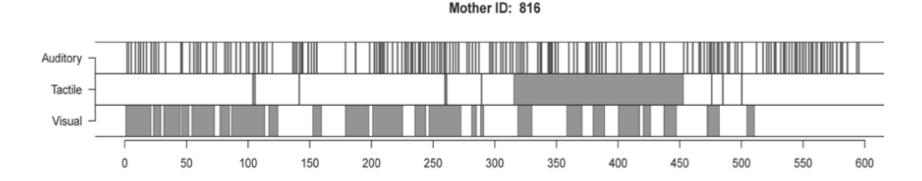

- Simulation study of different approaches to estimating the entropy rate (Vegetabile et al., 2019)
- Rows= Different entropy levels; Columns= Different estimation methods



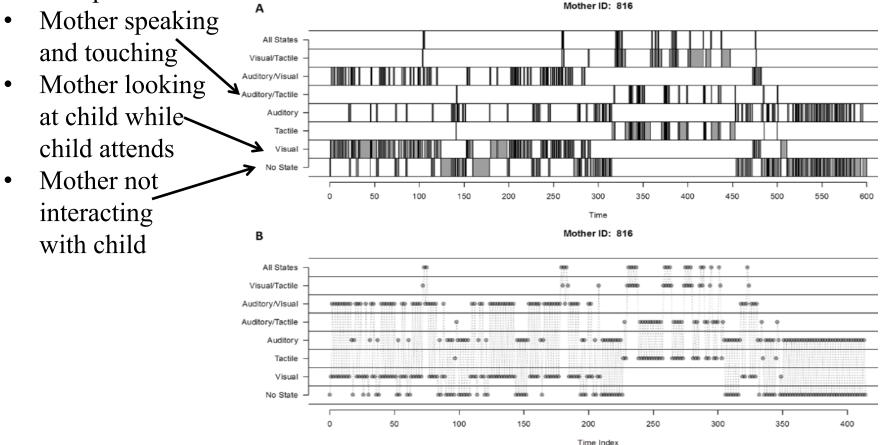
Assessing predictability - rodents

• Rodents

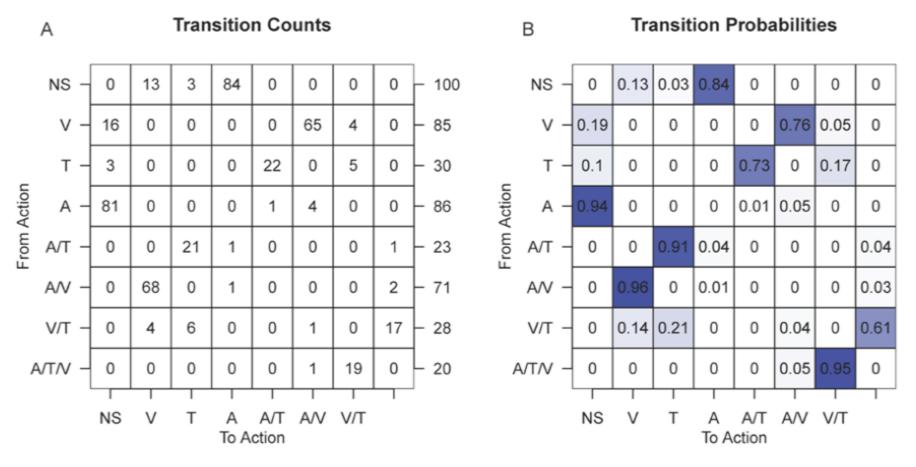

Transition Probabilities

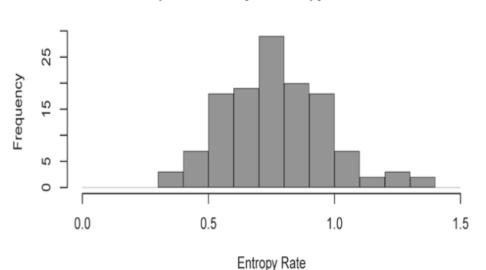

Assessing predictability - humans

Initial attempt based on a large number of recorded behaviors

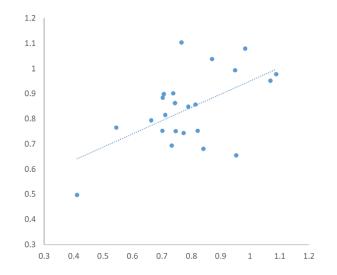


Assessing predictability - humans


For one mother-child pair, record of the three sensory channels being engaged/not


- Define behavioral states with respect to which sensory channels are in use
- For example:

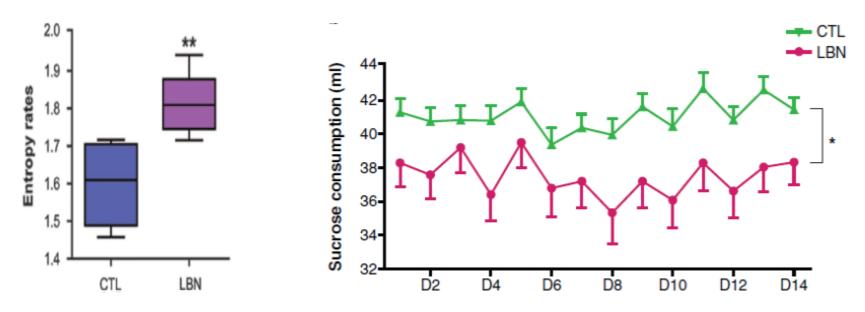
• Summarize by looking at transitions between states (counts, probabilities)


- Computed the entropy rate for each mother assuming first-order Markov process
- Also considered alternative models

Empirical Density of Entropy Rate Values

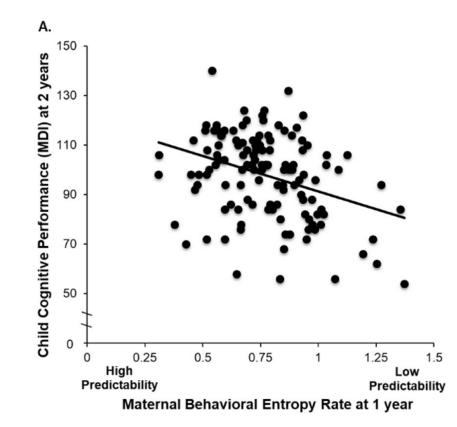
Reliability of the entropy measure

- Entropy computed from first five minutes of the 10-minute play session is correlated with entropy computed from the second five minutes (r = 0.5)
- Entropy computed from mother-child dyad at 6 months is correlated with motherchild dyad at 12 months (r=0.4)
- Mothers with two children in the studies have similar entropy (r = 0.55)

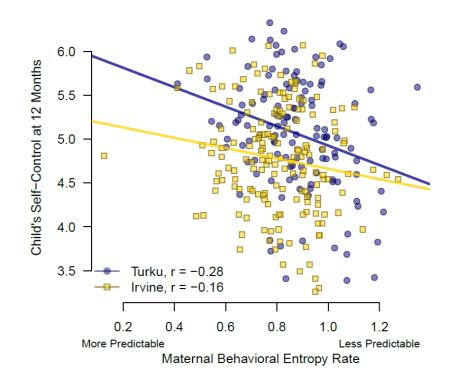

• Now have entropy from 2nd cohort ... similar results and relationships

Other measures of unpredictability

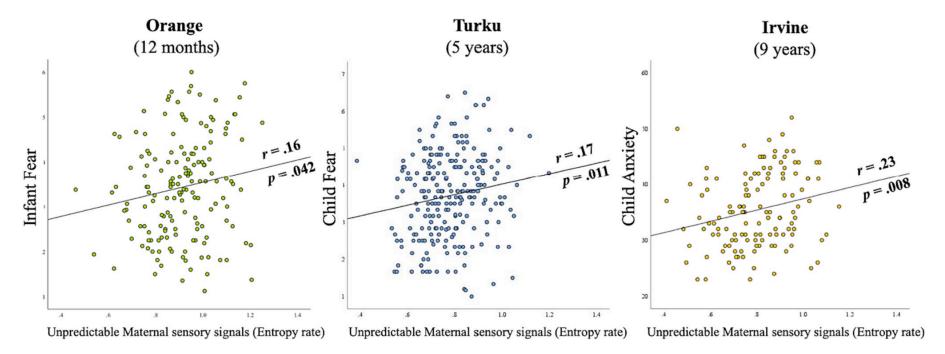
- Household chaos
- Maternal mood
 - Mood scales completed by mothers at 15, 20, 25, 30, 35 weeks prenatally and several time points postnatally
 - Scales measured: depressive symptoms, state anxiety, pregnancy-specific anxiety, perceived stress
 - Alternative approach examined consistency / randomness of item responses within each scale at a given time point
 - Averaged this measure across scales and time points -> maternal mood entropy


Effects of unpredictability in rodents

- We take the same steps to measure entropy in rodent mothers
- Mothers in LBN cages have much higher entropy (i.e., are less predictable)
- Their offspring are vulnerable to emotional/cognitive issues
- Offspring also demonstrate much reduced interest in pleasurable activities (e.g., sugar consumption) → anhedonia
- Other signs of anhedonia as well


Effects of unpredictability in humans?

• Maternal behavioral entropy at 1 yr visit is associated with child's cognitive performance at 2 years (and later in life)


Effects of unpredictability in humans?

• Maternal behavioral entropy is associated with child self-control in two very different cohorts (Irvine, CA and Turku, Finland)

Effects of unpredictability in humans?

- Maternal behavioral entropy is associated with child outcomes across different ages
- Here we show patterns for internalizing behaviors (fear/anxiety)
- True also for effortful control across ages

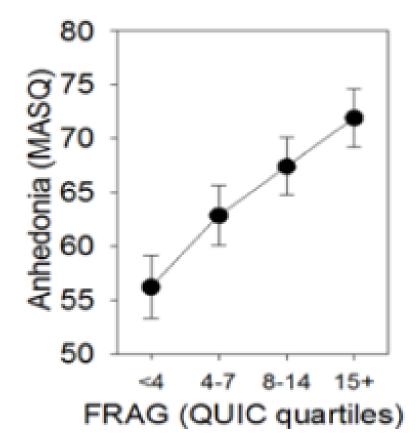
Translation beyond childhood

- New project with marine veterans for the last 5 years
 - Relate early life environment to anhedonia
 - Relate early life environment and anhedonia with vulnerability to PTSD and other mental illness
- Challenge How do we assess early life environment for these young adults?

A self-report measure of childhood unpredictability

- Questionnaire of Unpredictability in Childhood (QUIC) (Glynn et al. 2018)
- 38 items organized in 5 subscales (parental predictability, parental environment, parental monitoring, physical environment, safety) Examples:
 - There were often people coming and going in my house that I did not expect to be there
 - I experienced changes in my custody arrangement
 - I often wondered whether or not one of my parents would come home at the end of the day

(n=95)

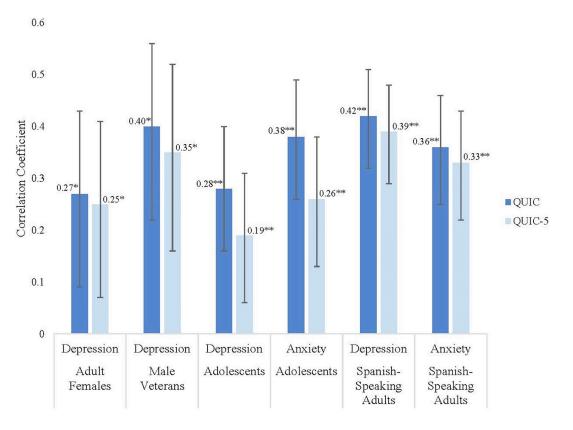

(n=175)

- Tested on 3 cohorts
 - Adult females (mothers of adolescents) (n=116)
 - Adult males (marines)
 - Adolescents

A self-report measure of childhood unpredictability

- Good psychometric properties
 - Test-retest reliability (r=.92)
 - Internal consistency (alpha=.84 .92)
 - Adolescent data validated by prospective reports for some items (e.g., moving)
 - QUIC correlated with other measures of traumatic/stressful life events
 - Adolescent QUIC scores correlate with maternal behavioral entropy (r=.23)
 - QUIC predicts mental health risk (anhedonia, depression, anxiety)

Effect of Unpredictability in Marines

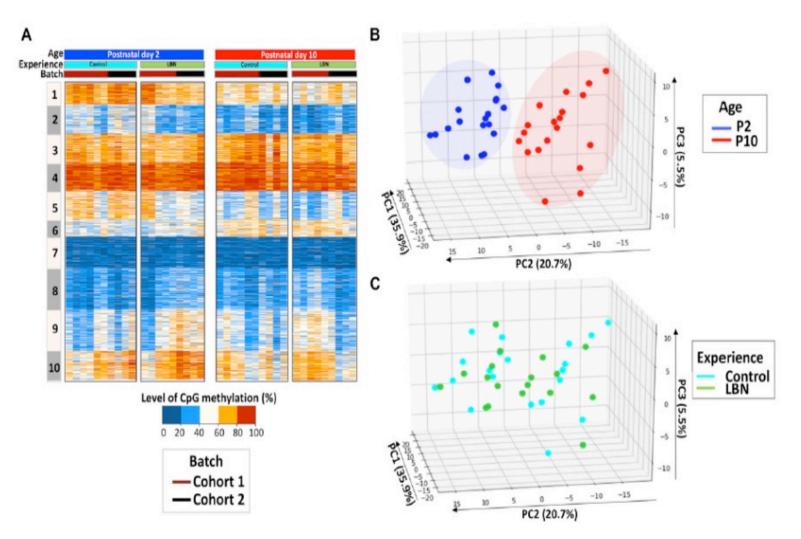


UCI Department of Statistics

Donald Bren School of Information & Computer Sciences

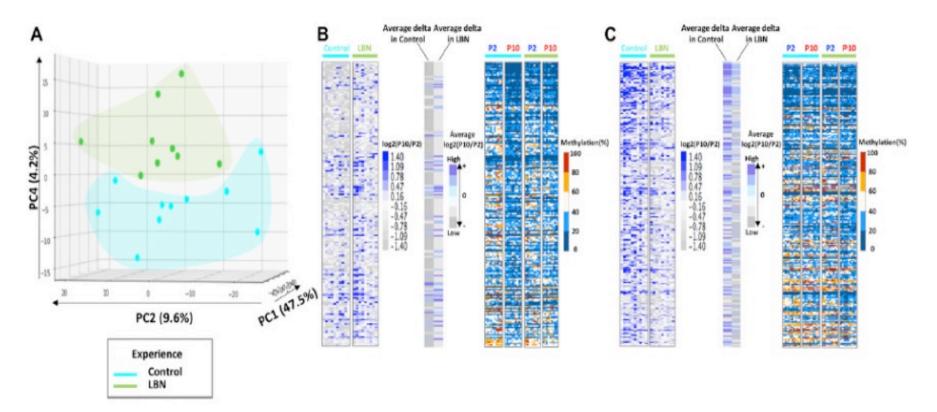
A self-report measure of childhood unpredictability for clinical use

- The QUIC has proven to be a useful scale for research
- Adopted by other labs
- But of limited use for clinical application
- We have developed a 5-item version (more on this later)



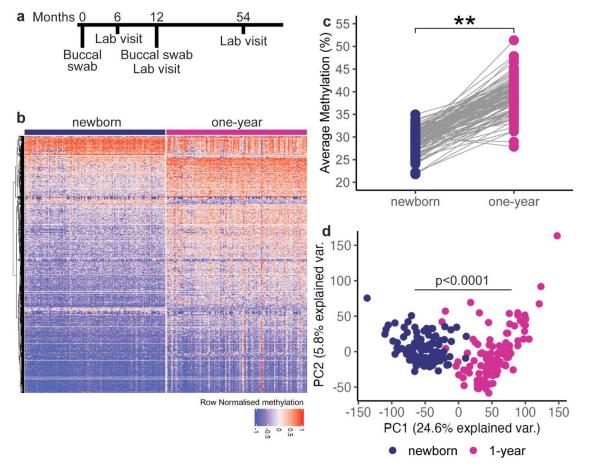
Exploring mechanism - methylomics

- Environment can effect expression of genes
- One mechanism is DNA methylation
- CpG sites (cytosine (C) follow by guanine (G)) can be methylated (a methyl group is added)
- This can change the expression of the associated gene
- We explore whether methylomics may be a way in which early-life adversity (unpredictability) leaves a "mark"
- One challenge that has been observed in methylomic analyses is that there is considerable inter-individual variation in methylation levels


Methylomics in rodents

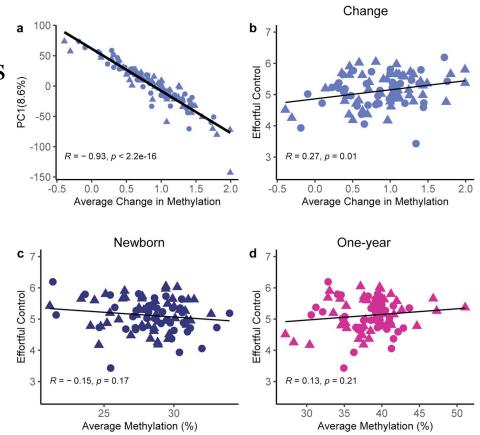
• An initial analysis of rodent data incorporating day 2 and day 10 samples distinguishes age but not CTL/LBN

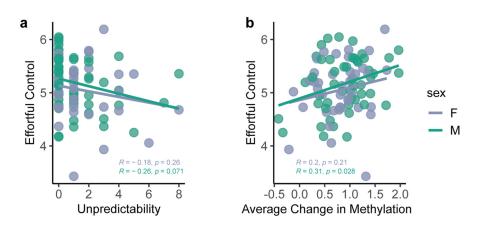
Methylomics in rodents


- Considerable inter-individual variation
- An alternative analysis focuses on intra-individual change in methylation (log (P10 / p2))

UCI Department of Statistics

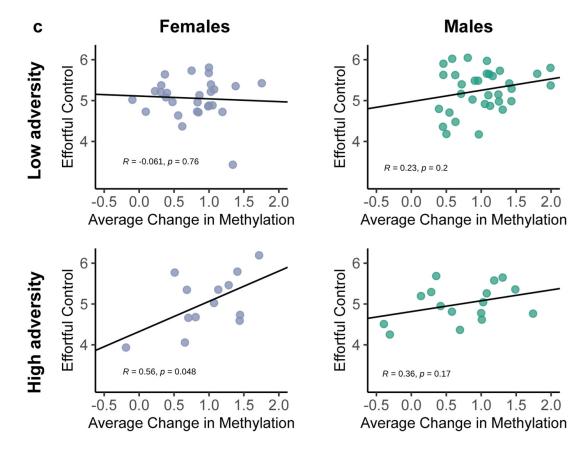
Donald Bren School of Information & Computer Sciences


• An initial analysis of human data incorporating newborn and 12month samples distinguishes age (which is not very interesting)


UCI Department of Statistics

Donald Bren School of Information & Computer Sciences

- Apply the same approach that was useful in the rodents
- Consider the delta/change in methylation over the two time points
- Plot a shows that the first principal component of the delta methylation scores is essential average change
- So we use average change
- Plot b shows that average change in methylation is associated with effortful control in children
- Plots c,d show that individual methylation measures are not


- Established literature (earlier in the talk) that unpredictability is associated with outcomes in humans (figure a below)
- Previous slide shows methylomics is associated with outcomes in humans (figure b repeated here)

- Animal studies found that methylomics could distinguish control and LBN rodents
- For humans, average change in methylation and unpredictability are not directly related (r = -0.07)
 UCI Department of Statistics Donald Bren School of Information & Computer Sciences

- Recall that for animal studies, methylomics could distinguish control and LBN rodents (unpredictability), and unpredictability was associated with child/adolescent outcomes
 - Other studies (not discussed here) show that unpredictability appears to create a "vulnerability" to future adversity
- For humans:
 - Average change in methylation and unpredictability are only weakly related (r = -0.07)
 - We explore whether unpredictability and methylomics may interact in their impacts on children

• Some preliminary evidence that unpredictability may impact the relationship of methylation and outcomes in a sex-dependent way, i.e., an interaction

Conte Center Next Steps

- Next steps
 - Funding from a CA Precision Medicine Award to investigate effects of early-life unpredictability in population
 - Partnerships with clinics
 - Data on thousands of children (QUIC5 and outcomes)
 - Methylomics
 - Validation sample from the Precision Medicine study
 - Partnership with Finland collaborators

Summary

- Novel early-life experience (maternal unpredictability) developed in a rodent model
- Interrogated through a variety of data analysis approaches
 - Application of entropy (across species) to characterize unpredictability
 - Standard statistical analysis (correlation/regression) associating unpredictability with a range of outcomes
 - High-dimensional AI/ML approaches to explore genetic markers or impact of unpredictability
- Importance of collaboration and team science
- Contact: sternh@uci.edu