

mRNA Lipid Nanoparticles: Past, Present & Future 150 Years of Vaccine Science

Questions From the mRNA LNP Vaccine Hesitent Public

Q1: Is the mRNA Lipid Nanoparticle Vaccine Safe ? A: Yes we've been working on it for 35 years, it's been administered to humans, and it is safe.

Q2: If you've been working on it for 35 years, why did it take so long ?

A: ???

Outline

- Vaccine History Timeline
 - Deploying and Adopting Scientific Discovery Takes Time
- Bangham's Magic Bullets (Ehrlich)
 - Lipid bilayer membranes (Thompson)
- Lipoplex
 - Synthetic self-assembling gene delivery systems
- Nucleic Acid Vaccines
 - How good are they?
- What's next?

https://archive.org/details/in.ernet.dli.2015.221187

"Charite" https://www.netflix.com/ca/title/80178971

Copyright 1926

Epidemics of the Past

430 B.C.	Plague of Athens
160 A.D.	Plague of Antinonine
542 A.D.	Plague of Justinian
1340 A.D.	The Medieval Plague
1500 A.D.	Plague of the Incas
1665 A.D.	Great Plague of London
1793 A.D.	Yellow Fever
1832 A.D.	Cholera
1918 A.D.	Influenza
20-21 st Century	Ebola, HIV, Swine Flu, Chikungunya, Zika

"The impact of vaccination on the health of the world's peoples is hard to exaggerate. With the exception of safe water, no other modality has had such a major effect on mortality reduction and population growth."

Stanley Plotkin

Emeritus Professor of Pediatrics, Perelman School of Medicine, University of Pennsylvania

To my Vaccine History slide deck Stanley replied,

"I hope you will forgive me for saying that I think your analysis is oversimplified."

Susan and Stanley Plotkin A Short History of Vaccination, in *Vaccines* 1st Edition, 1988

49 Vaccines from 1798 – 2020 each with its own history

#	Year	Vaccine
1	1798	Smallpox (live)
2	1885	Rabies (<i>live</i>)
3	1886	Typhoid (inactivated)
4	1896	Cholera (inactivated)
5	1897	Plague (inactivated)
6	1923	Diphtheria (<i>toxoi</i> d)
7	1924	Tetanus (<i>toxoid</i>)
8	1926	Pertussis (inactivated)
9	1927	TB (<i>live</i>)
10	1935	Yellow Fever (<i>live</i>)
11	1936	Influenza (<i>inactivated</i>)
12	1938	Typhus (inactivated)
13	1955	Polio (inactivated)
14	1963	Polio (<i>live, oral</i>)
15	1963	Measles (<i>live</i>)

#	Year	Vaccine
16	1967	Mumps (<i>live</i>)
17	1969	Rubella (<i>live</i>)
18	1970	Anthrax (<i>protein</i>)
19	1974	Meningococcal PS
20	1977	Pneumococcal PS
21	1980	Adenovirus (<i>live</i>)
22	1980	Rabies (cell culture)
23	1981	Tick encephalitis (inactivated)
24	1981	Hep B (<i>plasma</i>)
25	1985	Haemophilus (polysacc.)
26	1986	Hep B (<i>recombinant</i>)
27	1987	Haemophilus (conjugate)
28	1989	Typhoid (<i>live</i>)
29	1991	Cholera (recomb. Toxin)
30	1992	Japanese Encephalitis (inact.)

#	Year	Vaccine
31	1993	Varicella (<i>live</i>)
32	1994	Cholera (live)
33	1994	Typhoid (polysacc.)
34	1995	Pneumococcal (PS)
35	1996	Acellular Pertussis (protein)
36	1996	Hep A (inactivated)
37	1998	Lyme (OspA protein)
38	1999	Rotavirus (reassortants)
39	1999	Meningococcal (conjugate)
40	2000	Pneumococcal(conjugate)
41	200-	Live attenuate Flu
42	200-	Rotavirus
43	200-	Meningococcal A/C/W/Y
44	200-	HPV
45	200-	Zoster (live and subunit)
46	200-	Japanese Encephalitis (Vero)
47	200-	Meningococcal Group B
48	200-	Oral Cholera
49	2020	RTS,S Malaria

Vaccine History Timeline - Adopting Scientific Discovery Takes Time – Why?

Shingles

Convincing Professional and Lay Communities – takes time

- Public Belief and Acceptance
 - 1992 Pope Paul II vindicated Galileo for heresy 350 years earlier
 - Nucleic Acid vaccination isn't 'Cold Fusion'

Archaic Manufacturing – takes time

- 'Vaccine Farms'
- Safety Vaccinees and Manufacturing Personnel
- Scale 300 million chicken eggs

Foundations of Modern Vaccine and Lipid Nanoparticle Science

Foundations of Vaccine and Lipid Nanoparticle Science A Personal Timeline

Tom Thompson 1926 - 2021

Maurice Hilleman

Proc. Natl. Acad. Sci. USA Vol. 75, No. 1, pp. 308–310, January 1978 Biophysics

• Hydrodynamic Properties of lipid vesicles

Geometric packing constraints in egg phosphatidylcholine vesicles*

(inner and outer monolayers of vesicle bilayers/transmembrane asymmetry)

C. HUANG[†] AND J. T. MASON

Department of Biochemistry, University of Virginia School of Medicine, Charlottesville, Virginia 22901

Communicated by Manfred Eigen, October 17, 1977

Table 2.	Geometric packing parameters for egg	
	phosphatidylcholine vesicles	

Parameter	Values
Radial parameters	$R_A = 62 \text{ Å}; R_B = 78 \text{ Å}; R_C = 99 \text{ Å}$
Outer monolayer thickness	$(R_C - R_B) = 21 \text{ Å}$
Inner monolayer thickness	$(R_B - R_A) = 16 \text{ Å}$
Number of lipid molecules	
in each monolayer	$n_o = 1658; n_i = 790$
Volume per lipid molecule	$V_o = V_i = 1253 \text{ Å}^3$
Surface area per lipid	
head group	Outer, 74 Å ² ; inner, 61 Å ²
Acyl chain cross section	
at R_B	Outer, 46 Å ² ; inner, 97 Å ²
Anhydrous bilayer	
thickness	$(R_C - R_A) = 37 \text{ \AA}$

20 nm Small Unilamellar Vescicle (SUV) 2,500 lipid molecules Molecular Weight = 1.9 million Kd

Small Unilamellar Liposome (SUV)

Shape

lipid micelle

Cone

Micelle

Bilayer

Lipid Shape determines Nanoparticle structure

A self-assembling system whose structure is determined by the shape and physical properties of monomers

lipid bilayer

Cylinder

Inverted cone

Inverted micelle Hexagonal (H_{II}) Phase **No Positivley Charged Lipids** In Nature

inverted micelle Hex II phase

Gene and Vaccine Science at Syntex

• In 1982 there were no positively charge lipid molecules that could form stable bilayers

- The First Stable Cationic Bilayer Vesicles
 - Drug delivery vehicle
 - Cell penetration enhancer
 - Vaccine formulation
 - Nucleic acid delivery

Tony Allison 1925 – 2014

Syntex Adjuvant Formulation 1 (SAF-1) squalene O/W emulsion (Addavax) became, Novartis MF59

MF59-adjuvanted H1N1 pandemic influenza vaccine (Focetria[®] and Celtura[®]) Virus-like Liposomes for Gene Delivery ? The Problem with Virosome Synthesis: Low DNA Encapsulation Efficiency

Liposome Internal Diameter

5,000 Base Pair Plasmid → 1,700 nm long Can Cationic Lipid Vesicles capture nucleic acid? Make Virosomes by self-assembly rather then encapsulation

Surprise #2: It worked right away to deliver and express functional plasmid DNA and mRNA genes into living cells *Genetic Reprograming* ~1985

Lipofection Reagent

Convenient Genetic Reprograming of Cells in the Laboratory

Green Fluorescent Protein Expession in Cultured Cells after '*Lipofectin*'

DOTMA patent

Surprise #3: Lipofectin is a phenomenally

successful product

Value - \$300M/year for 30 years

United States Patent	[19]	[11]	Patent Number:	4,897,355
Eppstein et al.		[45]	Date of Patent:	Jan. 30, 1990

N[ω,(ω-1)-DIALKYLOXY]- AND N-[ω,(ω-1)-DIALKENYLOXY]-ALK-1-YL-N,N,N-TETRASUBSTITUTED AMMONIUM LIPIDS AND USES THEREFOR

- Inventors: Deborah A. Eppstein, Menlo Park; Philip L. Felgner, Los Altos; Thomas R. Gadek, Oakland; Gordon H. Jones, Cupertino, all of Calif.; Richard B. Roman, Fairhope, Ala.
- Assignee: Syntex (U.S.A.) Inc., Palo Alto, Calif.
- Filed: Oct. 29, 1987

<section-header><section-header><section-header><section-header>

1987 Lipofectin Reagent

https://www.romangoshoes.com/video.html

DNA/RNA Lipofection In Vivo

- Surprise #4: Syntex 1987
 - "No, we can't support it. Gene Therapy is for the year 2020", Hardy Chan, Dir. Mol Biol
- Started Vical Inc.

Surprise #5: The in vivo study worked the first time

Jon Wolff University Wisconsin 1956-2020

<u> 1990 – Naked Gene Transfer</u>

Reprint Series 23 March 1990, Volume 247, pp. 1465-1468 SCIENCE

Direct Gene Transfer into Mouse Muscle in Vivo

JON A. WOLFF,* ROBERT W. MALONE, PHILLIP WILLIAMS, WANG CHONG, GYULA ACSADI, AGNES JANI, PHILIP L. FELGNER

Merck & Co, License Maurice Hilleman

Volume 12 Number 18 1984

Nucleic Acids Research

Efficient *in vitro* synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter

D.A.Melton, P.A.Krieg, M.R.Rebagliati, T.Maniatis, K.Zinn and M.R.Green Doug Melton Harvard mRNA Synthesis & Expression in Oocytes

Nucleic Acid Vaccines Surprise #6: It worked the first time

Jeff Ulmer TechImmune LLC

6

5

3

0

og [ELISA titer]

Nancy Haigwood Oregon Health & Science Univ.

Heterologous Protection Against Influenza by Injection of DNA Encoding a Viral Protein

Jeffrey B. Ulmer,* John J. Donnelly,* Suezanne E. Parker, Gary H. Rhodes, Philip L. Felgner, V. J. Dwarki, Stanislaw H. Gromkowski, R. Randall Deck, Corrille M. DeWitt, Arthur Friedman, Linda A. Hawe, Karen R. Leander, Douglas Martinez, Helen C. Perry, John W. Shiver, Donna L. Montgomery, Margaret A. Liu†

> Influenza DNA Vaccine 100 0000000 ***************** **NP DNA Vaccine** 80 Survival (%) 60-40· **Empty Vector** 20 ბიიიი Uniniected 0 5 10 15 20 25 30 Time (weeks) Time after challenge (days)

"This is one of the most exciting things in modern vaccinology", 1993

Maurice Hilleman 1919 – 2005 Merck Sharp & Dohme Vaccines for Measles, mumps, hepatitis A & B, chickenpox, meningitides, Strep pneumo, Haemophilis, and Asian flu

Origins of the 'Secret Sauce' LNP that makes the mRNA vaccine great! The UCI Lipid Nanoparticle Legacy

17th LIPOSOME RESEARCH DAYS 2022

University of British Columbia, Vancouver, Canada

Alec Bangham Award

SEPTEMBER 06 - 08, 2023 | VIRTUAL | TO BE DETERMINED

NEXT-GENERATION NANOMEDICINE Organizers: Philip Felgner, Anna Blakney, and Norbert Pardi

UCI Vaccine Antigen Discovery – 2002

COVID Serosurveillance in Orange County – 2020

Immunologic Imprinting with Proteome Microarrays

N

Example: *P falciparum* Proteome Microarray – 5,200 Proteins

nventory of		Total #	#		
		· · · · · · · · · · · · · · · · · · ·	Category	proteins	completed
Aicroarravs	Retroviruses	HIV 1&2 (5 subtype, 4 clades)		83	74
	Papilloma	HPV viruses (11 types)		88	88
	Orthopoxviruses	3 types	A	260	260
	Herpes Viruses	HSV 1&2, VZV, EBV		300	270
	Flaviviruses	WNV, Dengue, YF, SLE, JE	A	50	50
20	Alphaviruses	Chikungunya	С	10	10
58	Bacteria	Brucella melitensis	В	3,194	3,190
f		Chlamydia trachomatis		911	900
ntectious		Chlamydia muridarum		911	900
. .		Mycobacterium tuberculosis	С	3,990	3,899
Agents		Francisella tularensis	A	1,933	1,874
U		Coxiella burnetii	В	2,065	2,000
		Borrelia burgdorferi		1,600	1,400
		Burkholderia pseudomallei	В	5,728	1,400
100.000		Leptospira interrogans		3,658	3,658
		Salmonella enterica Typhi	В	4,318	4000
arrays		Orientia tsutsugamushi	С	1,400	1,400
		Rickettsia ricketsii	В	900	900
printed		Bartonella henselae	В	1,400	1,400
Printed		Enteric toxogenic E. coli		9,000	9,000
		Streptococcus penumonia		6,000	6,000
		Staphylococcus aureus (MRSA)		2,628	2,509
80 000		Vibrio cholera		4000	4000
80,000		Clostridium difficile		4,000	40
cora	Parasites	Plasmodium falciparum		8500	5,722
5CI a		Plasmodium vivax		5,300	2,200
Drohod		Schistosoma mansoni / japonicum		9,000	300
Flobed		Toxoplasma gondii		12,000	2,600
		Necator americanus		12,000	600
		Trypanosoma cruzi		15,099	240
		Trypanosoma brucei		8,529	214
	Human	Autoimmune array		21,000	1,800
		Endometriosis		"	
		Ovarian, Breast & Pancreas Cancer	bi-10 1101	12020 N	15 04236
	Total			127,623	>60,000

Benchtop Microarray Assay for Serological Testing

Serological Testing with Coronavirus Antigen Microarrays (COVAM)

Figure 1. Schematic diagram illustrating the steps for printing, sample probing, array imaging and analysis of data from the CoVAM (*Khan S. et al., bioRxiv, 2020*).

Respiratory Virus Antigen Microarray – 'DARPA Dormatory Cohort - 2019' 67 Antigens Printed in Quadruplicate

21 CoV-2/SARS/MERS

12 Common CoV

1	Virus	Subtype	Strain	Protein
	CoV	Beta	SARS-CoV-2	NP
	CoV	Beta	SARS-CoV-2	S1-RBD
	CoV	Beta	SARS-CoV-2	S1
	CoV	Beta	SARS-CoV-2	S1
	CoV	Beta	SARS-CoV-2	S1
	CoV	Beta	SARS-CoV-2	S2
Ī	CoV	Beta	SARS-CoV-2	S1+S2
	CoV	Beta	SARS	PLpro
	CoV	Beta	SARS	S1-RBD
	CoV	Beta	SARS	S1-RBD
Ī	CoV	Beta	SARS	S1
	CoV	Beta	SARS	NP
	CoV	Beta	MERS	NP
	CoV	Beta	MERS	S1-RBD
	CoV	Beta	MERS	S1-RBD
	CoV	Beta	MERS	S1-RBD
	CoV	Beta	MERS	S1-RBD
	CoV	Beta	MERS	S1
	CoV	Beta	MERS	S1
	CoV	Beta	MERS	S1+S2
	CoV	Beta	MERS	S2

Virus	Subtype	Strain	Protein
CoV	Alpha	N L63	S1
CoV	Alpha	N L63	S1+S2
CoV	Alpha	229E	S1
CoV	Alpha	229E	S1+S2
CoV	Beta	HKU1	S1
CoV	Beta	HKU1	S1
CoV	Beta	HKU1	S1+S2
CoV	Beta	HKU1	HE
CoV	Beta	HKU23-368F	NP
CoV	Beta	0C43	S1
CoV	Beta	0C43	S1+S2
CoV	Beta	0C43	HE

Virus	Subtype	Strain	Protein
RSV	A	LA2-94/2013	F
RSV	A	LA2-94/2013	G
RSV	A	A2	F
RSV	A	rsb1734	G
RSV	A	RSS-2	F
RSV	в	TH-10526/2014	F
RSV	в	TH-10526/2014	G
RSV	в	B1	G
MPV	A	PER/CFI0320/2010/A	G
MPV	в	PER/CFI0466/2010/B	G
MPV	в	PER/CFI0320/2010/A	F
PIV	1	1203	F
PIV	1	1203	н
PIV	3	USA/10991B/2010	н
PIV	4	hPIV-46/10-H2/2016	F
PIV	4	hPIV-46/10-H2/2016	н

	/		,	, , ,	-
	Protein	Virus	Subtype	Strain	Protein
3	F	Adeno	3	hAdV-3/46659	Fiber
3	G	Adeno	3	hAdV-3/46659	Penton
	F	Adeno	4	hAdV-4/28280	Fiber
	G	Adeno	4	hAdV-4/28280	Penton
	F	Adeno	7	Adeno7 10519	Fiber
4	F	Adeno	7	Adeno7 10519	Penton
4	G	Flu	H1N1	A/Beijing/22808/2009	HA1
	G	Flu	H1N1	A/Beijing/22808/2009	HA1+HA2
10/A	G	Flu	H3N2	A/Texas/50/2012	HA1
10/B	G	Flu	H3N2	A/Texas/50/2012	HA1+HA2
10/A	F	Flu	B	B/Malaysia/2506/2004	HA1

в

в

в

H5N1

H5N1

H7 N9

H7 N9

B/Malaysia/2506/2004

B/Phuket/3073/2013

B/Phuket/3073/2013

A/Vietnam/1203/2004

A/Vietnam/1203/2004

A/Anhui/1/2013

A/Anhui/1/2013

HA1+HA2

HA1

HA1+HA2

HA1

HA1+HA2

HA1

HA1+HA2

118 Serum Specimens

34 Other Respiratory Viruses RSV/MPV/PIV/Adeno/Flu

Flu

Flu

Flu

Flu

Flu

Flu

Flu

Coronavirus Antigen Microarray - COVAM

Why Microarray Testing for COVID-19?

- Tens to hundreds of antigens can be probed in a single test.
- Highly sensitive and specific.
- Can provide serological testing on a large scale.
- Can monitor antibody levels to many viruses simultaneously.
- Plasma samples can be stored for long periods of time and easily shipped.
- <u>The data informs</u> <u>containment, mitigation &</u> <u>vaccine development.</u>

Coronavirus Antigen Microarray – COVAM – Sensitivity & Specificity

Antibody	Antigen	Coefficient	Intercept	Cutoff	Sensitivity	Specificity
lgG	NP	-0.000577		0.634	95.5%	
	S1+S2	0.000191	-11.0079			100%
	RBD(rFc)	0.006581				
ΙgΜ	NP	-0.000429	-18.2677	0.689	90.9%	
	S1(His)	0.009209				100%
	S1-RBD	0.002402				

Finger Stick Blood Collections

- 1,400 UCIMC Healthcare Workers
 - 10% Overall Seroprevalence
 - 14% Positive ICU Nurses
- 3,500 Orange County Residents
 - 10% Overall Seroprevalence
 - Granularity associated with demographics
- 1,400 UCIMC Longitudinal Study
- 8,000 Orange County Residents December
- Up to 1,000 specimens / week
- 10,000 Individual Reports sent by QR code to each donor

Measurements

<u>Virus</u>	Antigen #
SARS-CoV-2	10
SARS	4
MERS	3
Common CoV	12
Influenza A/B	8
Total	37
Triplicate	111

Date

Orange County Serosurveillance Study Monitoring Naturally Acquired Herd Immunity – 2020

Seroprevalence Progression in Orange County Residents and UCIMC Healthcare Workers

Samples

Collection	<u>Number</u>	<u>Date</u>
Orange County	3,500	July '20
Santa Ana	3,000	Dec '20
UCI Healthcare Workers	1,400	May '20
UCI Healthcare Workers	313	Dec '20
UCIMC Biorepository	598	2020
Total	8,811	

Orange County Sero surveillance Study Monitoring Naturally Acquired Herd Immunity – 2020

Seroprevalence Progression in Orange County Residents and UCIMC Healthcare Workers

Samples Collection Number Date July '20 **Orange County** 3,500 Santa Ana Dec '20 3,000 **UCI Healthcare Workers** May '20 1,400 **UCI Healthcare Workers** 313 Dec '20 **UCIMC Biorepository** 598 2020 Total 8,811 **UCI Healthcare Vaccinees** Jan '21 140 Feb '21 **UCI Healthcare Vaccinees** 560 700 Total

Orange County Sero surveillance Study Monitoring Vaccine Induced 'Herd' Immunity – 2021

Seroprevalence Progression in Orange County Residents and UCIMC Healthcare Workers

Samples Collection Number Date **Orange County** July '20 3,500 Santa Ana Dec '20 3,000 **UCI Healthcare Workers** May '20 1,400 **UCI Healthcare Workers** 313 Dec '20 **UCIMC Biorepository** 598 2020 Total 8,811 **UCI Healthcare Vaccinees** Jan '21 140 Feb '21 **UCI Healthcare Vaccinees** 560

Total

700

Orange County Sero surveillance Study Monitoring Vaccine Induced 'Herd' Immunity – 2021

mRNA Vaccine Ab Response Induced in Indiviuals

<u>Samples</u>

Collection	<u>Number</u>	<u>Date</u>
Orange County	3,500	July '20
Santa Ana	3,000	Dec '20
UCI Healthcare Workers	1,400	May '20
UCI Healthcare Workers	313	Dec '20
UCIMC Biorepository	598	2020
Total	8,811	
UCI Healthcare Vaccinees	140	Jan '21
UCI Healthcare Vaccinees	560	Feb '21
Total	700	

Orange County Serosurveillance Study Monitoring Vaccine Induced 'Herd' Immunity – 2020

Orange County, Santa Ana, December 2020 3,347 Specimens - 26% Seropositive

UCI Healthcare Workers, February/March2021 907 Specimens - 94% Seropositive

Mean Fluorescence Intensity (MFI)

Predictions Positive Negative Random Forest IgG Probability

							Nucleocapsid Protein				
0	10,000	20,000	30,000	40,000	50,000	60,000	Random Forest IgG		1	0.75	0.5

The COVID mRNA Vaccine is Spectacular !

Orange County Sero surveillance Study Monitoring Vaccine Induced 'Herd' Immunity – 2021

<u>Compare</u>

- Naïve vs. Naturally Exposed
- Vaccinated vs. Naturally Exposed
- Naïve/Vaccinated vs. Naturally Exposed/Vaccinated

<u>Summary</u>

- 26% natural exposure positive in OC
- •>90% HCW positive in February
- RBD not well recognized after natural exposure
- RBD dominant after mRNA vaccination
- 98% of the seropositive population in Santa Ana did not report to a clinic
- Everybody also has Ab against Common CoV and Influenza virus

Correlation matrix:

а

Comparing cross reactivity of Natural Exposure to mRNA Vaccination

Natural Exposure

December, Orange County, Santa Ana

mRNA Vaccinees

February, UCI Medical Center

b

Summary: COVID mRNA Vaccine Induced Immunity

Seroprevalence Progression in Orange County Residents and UCIMC Healthcare Workers

Public and Personalized Medicine Need to Know:

- Could I have immunity to the COVID 19 virus ?
- How long does it last?
- Do I need the vaccine if I had COVID ?
- Can I go to work yet ?
- Which Vaccine is Better ?
- When do I need another shot ?

Acknowledgements

Program in Public Health

- Bernadette Boden-Albala
- Daniel Parker

Vaccine R&D Team

- Aarti Jain
- Rafael Assis

UCI Medical Center

- Sebastian Schubl
- Cesar Figueroa
- Erika Linmey-Lasso
 <u>Student recruits and</u>
 <u>volunteers</u>

Felgner Lab Rie Nakajima Jiin Felgner Li Liang Sharon Jan Al Jasinskas Anthony Gregory Aarti Jain Rafael De Assis **Emily Silzel**

Funding

National Institutes of Health

Polaris

Huw Davies Lab Egest Pone Jenny Davies Michael Hwang Kim Nguyen

Lisa Wagar Lab Jenna Kastenschmidt Suhas Sureshchandra Mahina Mitul Zach Wagoner Andrew Sorn Aviv Benchorin

Vaccine R&D Center

Vaccine Science in the 151st Year *What's Next ?*

Lipid Nanoparticle Publication History

Ompattro – LNP siRNA for hereditary transthyretin amyloidosis

What is a Lipid Nanoparticle ? Lipid Vesicles \rightarrow mRNA Lipid Nanoparticles

mRNA Lipid Nanoparticles – UCI 2021

Packed with mRNA

Nothing Inside

Close-packed Plasmid Lipoplex - Recap

Cationic Lipids

Lipid name	Structure	pKa (by TNS)	Note
DOTMA		NA (permanent cationic lipid)	
DODMA		6.59	
DODAP		5.62	
DLin-MC3-DMA		6.57	Used in Onpattro siRNA
ALC-0315	HO~~~~OJ	6.09	Used in Pfzier mRNA vaccine
SM-102		6.75	Used in Moderna mRNA vaccine

mRNA LNP self assembly instrument

Ignite (commercial system)

Dual syringe pump (in-house research use system)

Fabricated from Inovenso Pump, an inexpensive dual-syringe pump

	Ignite	In-house pump
Max flow rate	20 ml/min	8 ml/min
mRNA Encapsulation	95~100%	99%
LNP Particle size (d.nm)	70~80nm	86~91 nm
LNP Polydispersity Index	0.1~0.25	0.2~0.25
LNP Batch scale	Up to 20 ml	Up to 80 ml

In-house syringe pump produced mRNA LNPs with comparable quality.

mRNA LNP characterization

Particle sizing distribution (PSD) by Malvern sizer

Polydispersity Index (PdI) by Malvern sizer

Zeta potential (ZP) by Malvern zeta sizer

mRNA encapsulation by Ribogreen assay

Functional protein expression by in vitro transfection

LNP Formulations Screen Example

#	LNP	mRNA
1	DOTMA	Unmodified spike mRNA
2	DODMA	Unmodified spike mRNA
3	DODAP	Unmodified spike mRNA
4	MC3	Unmodified spike mRNA
5	SM102	Unmodified spike mRNA
6	ALC0315	Unmodified spike mRNA
7	ALC0315	Modified spike mRNA
8	ALC0315	None

Transfection

Spike mRNA/LNP Immunogenticy

Secretory Signal and Transmembrane Domain Deletion Variants

H1N1 LNPs immunization schedule

Hemagglutinin LNPs Ab levels mRNA deletion variants

H1N1 virus challenge

50ul i.n. H1N1 grown in eggs, 10^3 TCID50/ml

LNPs immunization study of H1 mRNA deletion variants. (A) H1N1 LNPs Immunization Schedule. (B) total IgG response time course in BALB/c mice. (C) Protection efficacy upon H1N1 virus challenge.

H1N1 virus challenge (cont'd)

- Both full length H1 mRNA and secreted H1 mRNA (dTM version) LNP conferred full protection.
- The intracellular H1 mRNA (dSP-dTM) LNP conferred partial protection in the absence of production of antigen specific IgG
- The partial protection is possibly mediated by CD8 cells since more weight loss was observed when anti-CD8 Mab was administered before and during challenge

Gene Editing with the Cre/Lox System

D0 Inject

D10 Harvest

tdTomato

- AiG tdTomato
- CRE mRNA LNP
- ALC 0315
- 50 microliters
- 100 ug/ml or 280 ug/ml RNA

Liver Ai9 TdTomato mouse – CRE mRNA/LNP Retroorbital Injection Control <u>CRE mRNA/LNP LOX Editing</u>

Liver Low Dose

High Dose

• Kidney

Cre/Lox GFP in Skin

Intramuscular Cre/LNP : What are the target cells ?

Control

Td Tomato

Macrophages

Enily Silzel

Philip Farahat

Where to we go from here?

It is the Gene Therapy and Nucleic Acid Vaccine Revival

The Washington Post

January 27, 2021 Stanley Plotkin

"... Say all you want about the horrors of this last year ... We have accomplished more than I would have imagined possible.... It's astounding. It's thrilling. I was about to say it's miraculous, but that's not right. I don't believe in miracles. It might sound a little fancy, but I believe in science. I believe in our capacity to endure and overcome ..."

Felgner Lab **Rie Nakajima** Li Liang Jiin Felgner Sharon Jan Al Jasinskas Anthony Gregory Aarti Jain Rafael De Assis **Erwin Strasburg** Emily Silzel Andy Yeromin Jacob Laster

Huw Davies Lab Jenny Davies Egest Pone Michael Hwang Sarai Ochoa

Lisa Wagar Lab

Jenna Kastenschmidt Suhas Sureshchandra Mahina Mitul Zach Wagoner Andrew Sorn Aviv Benchorin Tim Yates

Vaccine R&D Center

Funding

mRNA LNP self assembly by 'Ignite Microfluidic' Mixing Enabling the World

