

Big Data & Cancer: Where are we going?

July 17, 2024

Richard Van Etten, MD PhD Cancer Center Director

UCI

Disclosures

- COI: I am an advisor to Helio Genomics, an early cancer diagnostics company
- I am not an expert in this area, but what follows will be my own opinionated and relatively free-form discourse on this general topic
- If you want to hear from some <u>real</u> experts:

Dr. Eric Stahlberg NCI Frederick National Laboratory Around the Corner: Peering into the Future for Personalized Precision Health Tue July 23 1:00 pm

Dr. Jill Barnholtz-Sloan NIH Center for Biomedical Informatics & Information Technology Utilizing Data to Make Advancements for Cancer Wed July 24 1:00 pm

D'où Venons Nous / Que Sommes Nous / Où Allons Nous (Where do we come from? / What are we? / Where are we going?)

Paul Gauguin 1897

Drug Discovery

A story about rediscovering a targeted cancer drug

• 2000: Dave Fry and Peter Toogood at Parke-Davis synthesize PD-0332991, selective inhibitor of CDK4/6

• 2003: Pfizer acquires Parke-Davis. Clinical development of PD-0332991 is de-emphasized

• 2004: A phase 1 clinical trial of PD-0332991 in patients with relapsed/refractory solid tumors shows no major clinical responses, dose-limiting toxicity is myelosuppression

A story about rediscovering a targeted cancer drug

- 2007: Dr. Dennis Slamon at UCLA obtains access to PD-0332991
- 2008: Slamon's Translational Oncology Research Lab analyzes PD-0332991 in a panel of >600 biochemically and genetically defined cancer cell lines in a 6-day proliferation assay

- 2009: Specific activity of PD-0332991 is seen vs. ER⁺ breast cancer cells
- 2011: Dr. Richard Finn at UCLA runs a phase 1/2 study in 165 women with advanced ER⁺ breast cancer ± letrozole. Median PFS increased from 10 mo to 20 mo.

A story about rediscovering a targeted cancer drug

- 2013: Pfizer launches a randomized phase 3 study of PD-0332991 (now palbociclib) in ER⁺ HER2⁻ advanced breast cancer
- 2015: Positive trial results published in NEJM.
 Palbociclib receives accelerated approval from FDA

ORIGINAL ARTICL

Palbociclib in Hormone-Receptor–Positive Advanced Breast Cancer

Authors: Nicholas C. Turner, M.D., Ph.D., Jungsil Ro, M.D., Fabrice André, M.D., Ph.D., Sherene Loi, M.D., Ph.D., Sunil Verma, M.D., Hiroji Iwata, M.D., Nadia Harbeck, M.D., 😽 , and Massimo Cristofanilli, M.D.

Published July 16, 2015 | N Engl J Med 2015;373:209-219 | DOI: 10.1056/NEJMoa1505270 | VOL. 373 NO. 3

- 2017: Ribociclib (Novartis) approved by FDA for HR⁺ HER2⁻ met breast cancer
- 2018: Abemaciclib (Lilly) approved by FDA for HR⁺ HER2⁻ met breast cancer
- It took 15 years for the therapeutic potential of CDK4/6 inhibitors to be realized...

Can we do better than this?

REVIEWS

Teaser Artificial intelligence-integrated drug discovery and development has accelerated the growth of the pharmaceutical sector, leading to a revolutionary change in the pharma industry. Here, we discuss areas of integration, tools, and techniques utilized in enforcing AI, ongoing challenges, and ways to overcome them.

Artificial intelligence in drug discovery and development

McKinsev & Company Life Sciences How We Help Clients Our Insights Our People Contact Us

AI Poised To Revolutionize Drug Development Greg Licholai, MD

Newsfeature

https://doi.org/10.1038/s41591-023-02361-0

OF AI-DESIGNED DRUGS

Artificial intelligence tools are beginning to upend the drug discovery pipeline, with several new compounds entering clinical trials. By Carrie Arnold

nature medicine

Volume 29 | June 2023 | 1292-1295 | 1295

How Artificial Intelligence is Revolutionizing Drug Discovery

🏛 March 20, 2023 🛓 Matthew Chun 🛸 Artificial Intelligence, Biotechnology, Matthew Chun, Pharmaceuticals

Review Insights

helps boost targeted drug discovery, personalized

Al builds momentum for smarter health care

MIT Technology

Life sciences anticipates huge opportunities as AI health care, and more efficient production.

An AI-based drug development story: Insilico

Traditional Approach

An AI-based drug development story: Insilico

- Identified a potential novel drug target for idiopathic pulmonary fibrosis (IPF)
- Al-generated structure of this (undisclosed) target
- *In silico* selection and optimization of a small molecule inhibitor
- POC testing in a bleomycin-induced mouse pulmonary fibrosis model
- First-in-human PK study in healthy volunteers
- Launched phase 2 in Feb 2024 in IPF (total cost ~\$2M)

In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development

BRIEF COMMUNICATION

biotechnology

Deep learning enables rapid identification of potent DDR1 kinase inhibitors

In have developed a deep generative model, generative tensoin intercement teaming (GENTRI), to de avors small-modedo design. GENTRI: optimizes synthetic fasability, novely, and biological activity. We used GENTRI: to above one to the splicated in filtnesis and other diseases, in 21 days. Four memounds were active in biochemical axasys, and theo were distated in cell-based assays. One load candidate was tested d demonstrated fureable pharmacohistics in mice.

NATURE INDITICHHOLOGY | VOL 37 | SEPTEMBER 2019 | 1038-1040

ClinicalTrials.gov

A Phase 1, Evaluate the Safety, Tolerability, and Pharmacokinetics of INS018_055 in Healthy Subjects ClinicalTrials.gov ID
NCT05154240

Sponsor 1 InSilico Medicine Hong Kong Limited

Cancer Prevention & Screening

趙 Chao Family Comprehensive Cancer Center

UCI Health

Cancer risk assessment: polygenic risk scores

• Cancer risk assessment is straightforward with highly penetrant cancer susceptibility genes (e.g. *BRCA1* in breast cancer: 85% lifetime risk)

23andMe

 But what about cancers where the incremental impact of multiple genotypes with low individual attributed risk needs to be assessed? (~1 out of 8 women = 13% will get breast cancer in their lifetime)

Cancer risk assessment: polygenic risk scores Ancestry

• Illumina Global Diversity Array (1.8M SNPs)

3andMe

• What to do with the data? (Breast cancer: decrease alcohol consumption, lose weight, avoid HRT, change mammography schedules, prophylactic mastectomy?)

Cancer early diagnosis: Multi-Cancer Early Detection (MCED) Tests

ie

- Galleri detects specific methylated sites in circulating cfDNA
- Test algorithm trained on a "control" group (no h/o cancer, adherent to screening)

• Need for specific f/u for positive tests

*Galleri Helio

Cancer signal detected

"Precision" Oncology

Multi-Omics data and cancer therapeutics

- Current paradigm: sequence tumor → identify druggable target → try targeted therapy → publish case report of successful response
- Efforts to scale this approach: NCI MATCH, ASCO TAPUR
- UC Data Warehouse: omnibus source of Epic-derived patient data
- What is needed: technology to analyze genomic, epigenomic, transcriptomic, and proteomic patient data that is correlated with outcomes

ASCO TAPUR[°] Targeted Agent and Profiling Utilization Registry Study

Multi-Omics data and cancer therapeutics

Spatial 'Omics: the next frontier?

Courtesy Dr. Peter Sorger, MIT

Spatial 'Omics: Numerous platforms, limited clinical application yet

Xenium In Situ

Characterize up to 5,000 genes in cells and tissues with ultra precise single cell spatial imaging

MERFISH vizgen

Multiplexed Error-Robust Fluorescence in situ Hybridization

The Hyperion[™] Imaging Mass Cytometry (IMC) is based on laser ablation technology coupled with time-offlight (TOF) mass cytometry. This technology allows for a comprehensive understanding of complex cellular phenotypes and their interrelationships in the spatial context of the tissue microenvironment.

Courtesy Dr. Gordon Mills, Director of Precision Oncology at Knight Cancer Institute, OHSU

BRCA1/2 WT advanced breast cancer treated with PARP inhibitor

Courtesy Dr. Gordon Mills, Director of Precision Oncology at Knight Cancer Institute, OHSU

Digital Spatial Profiling Spatially oriented ROI

Multiplex digital spatial profiling of proteins and RNA in fixed tissue

Christopher R. Merritt¹⁰³, Giang T. Ong', Sarah E. Church[®], Kristi Barker', Patrick Danaher', Gary Geiss', Margaret Hoang', Jaemyeong Jung', Yan Liang', Jill McKay-Fleisch', Karen Nguyen', Zach Norgaard', Kristina Sorg', Isaac Sprague', Charles Warren', Sarah Warren', Philippa J. Webster', Zoey Zhou', Daniel R. Zeillinger', Dwayne L. Dunaway', Gordon B. Millis[®] and Joseph M. Beechem¹⁰⁵

Immune Cell Profiling Core	Pan tumor module	Cell Death Module	Oncogenic Signaling - PI3K/AKT	Oncogenic Signaling - RAS.MAPK	DNA damage signaling panel
PD-1	MART1	BAD	PTEN	MET	Cyclin E1
CD68	NY-ESO-1	BCL6	AKT-pS473	p-cMET (Y1234/1235)	ATM_pS1981
HLA-DR	S100B	BCLXL	GSK3ALPHABETA_ pS21/S9	EGFR	ATR_S428
Beta-2- microglobulin	EpCAM	BIM	GSK3_pS9	p-EGFR (Y1068)	с-Мус
CD11c	p21	p53	PRAS40_pT246	Her2	ARID1A
CD20	GAPDH	GZMA	TUBERIN_pT1462	**p-HER2 (Y877)	Cyclin B1
CD3	ER-alpha	CD95/Fas	INPP4B	FGFR1	Cyclin D1
CD4	PR	PARP	PLCG1	Phospho-MEK1 (S217/S221)	AR
CD45	Histone H3	Cleaved caspase 9	Pan-AKT	Phospho-p90 RSK (T359/S363)	p-HER2 (Tyr1248)
CD56	Total Rb	*NF1B	p-4EBP1 (Thr37/46)	p-ERK1/2 (T202/Y204)	p-gammaH2A> (Ser139)
CD8	p-RB (S807)	Mcl-1	S6	p-cMYC	p-Chk2
CTLA4	Ki-67	cleaved PARP	p-S6		p-Histone H3
GZMB	Tumor targets	Bc⊦2	IRF1		total ATM
PD-L1	CDK4	Controls			SLFN11
PanCk	CDK6	Rb lgG			
SMA	RRM2	Ms IgG1			
Fibronectin	Trop2	Ms IgG2a			

Immune and tumor microenvironment

ADCs March 2023

Courtesy Dr. Gordon Mills, Director of Precision Oncology at Knight Cancer Institute, OHSU

Al in Medicine

AI and medicine: hope or hype?

Things AI will <u>definitely</u> be good for:

• Interpretation of any images:

Radiology

 Type of lenging
 Debug of Light of li

Pathology

Dermatology

AI and cancer: hope or hype?

Things AI will <u>might</u> be good for:

• Mining big data sets for novel insights into disease pathogenesis & therapy

Thank you & Discussion

趙 Chao Family Comprehensive Cancer Center

UCI Health