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Metabolism in Context
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Metabolomics is the closest ‘omics to phenotype



Altered Metabolism is a Recent (Re)-Addition to the Hallmarks of Cancer
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Altered Metabolism in Cancer: Warburg Effect
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How To Study Cancer Metabolism:

» Analysis of small molecules in bio-systems
~20,000 aq + 200,000+ lipids
Endogenous + Exogenous metabolites

» Applications in Metabolomics
Disease Diagnostics
Personalized Medicing 1000,
Food and Nutrition :
Cellular Metabolism
Drug Discovery
Toxicology
Sys Bio Research
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Brief History

2000 BC Chinese/Greek apocryphal story of ants
1800-1900: Identification of various metabolites

1930 — 50’s Metabolite pathways identified

1950 -1960's: MS and NMR development

1960's: First "metabolomics” studies

1970's: LC and chemometrics development

1980’s: LC-MS and high field NMR development

1998-99: Metabonomics and metabolomics coined

2000’s: Development of statistical methods and databases
Field is expanding rapidly (>1000 papers/year)



Is:

Metabolism

Complex
Interconnected

Influenced by genetics & environment
(food, stresses including illness)

Affects upstream biology (gene
expression, epigenetics, protein function)

Metabolic Map

crTmary




Metabolic Maps

Metabolism map
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Metabolism is the complex network

of chemical reactions that occur in

the cells of your body. These reactions
modify the chemicals you take in in
your food and convert them into
chemicals required to keep your

A biochemistry ticking over.
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AlL the reactions in a metabolic
pathway are driven by enzymes. These
3-Hydroxy-L-kynurenine are biological catalysts which drive
reactions which would otherwise not
2-Amino-3-carboxymuconate happen. Enzymes also regulate
semialdehyde ) metabolism and control which
I-Aminomuconate semialdehyde Guanine pathways are active at any particular
time.
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D-Fructose 16 bisphosphate trans-(n)-enoyl-CoA 3-Oxy(n)oyl-CoA
D-Fructose |-phosphate Not all chemical conversions can
happen in all organisms. An organism
Urea might be missing the enzymes needed
to make some chemicals, eg. humans
do not have the enzymes needed to
make Llysine. All the Lysine our cells
use has to come directly from our
food.
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organisms have very similar central

(C metabolic processes. Essentially every
living thing from bacteria to humans
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cycle.
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The metabolism of an organism defines
what the organism needs and what it
finds toxic. Hydrogen sulphide kills
animals, but some bacteria need it to
survive!
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Networks of Metabolites from Modeling

From recent modeling studies we've
performed, we found metabolites are often
connected to a broad range of metabolite
classes and pathways.

These are connected through the metabolite-
metabolite correlations.

Indicates broad range of metabolite networks
beyond canonical (KEGG) pathways are

connected biologically among the metabolites.

Li et al, PNAS 2024
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Metabolomics and Public Health

Growing number of diseases now associated with altered metabolism:
Cancers, CVD, Diabetes, Alzheimer's, TB, Hepatitis, etc.

The Field of Metabolomics is Focused on:

Foods and nutrition — effect on health/disease
Microbiome studies — Effect on health
Microbial studies: Infectious disease
Environmental studies: Exposome

Precision/Personalized Medicine
And More

Plus,

Drug discovery efforts in pharma
Fundamental Systems Biology



Important Cancer Related Metabolomic Findings

nature Vol 45712 February 2009 | doi:10.1038 /nature07762

LETTERS

Sarcosine found as a
strong tissue marker
of PC aggressiveness.

Metabolomic profiles delineate potential role for
sarcosine in prostate cancer progression

Arun Sreekumar™®*#, Laila M. Poisson’*, Thekkelnaycke M. Rajendiran'?*, Amjad P. Khan?*, Qi Cao'?,

Jindan Yu"?, Bharathi Laxman®?, Rohit Mehra'~, Robert J. Lonigro"*, Yong Li'*, Mukesh K. Nyati*®, Aarif Ahsan®,
ShankerKalyana-Sundaram®?, Bo Han'?, Xuhong Cao"?, Jaeman Byun’, Gilbert S. Omenn®”®, Debashis Ghosh*>"!,
Subramaniam Pennathur®*’, Danny C. Alexander'?, Alvin Berger'?, Jeffrey R. Shuster'?, John T. Wei*?,
Sooryanarayana Varambally** Christopher Beecher** & Arul M. Chinnaiyan®>**%10

Vol 46210 December 2009 | doi:10.1038 /nature08617 nature

ARTICLES New findings link genetic

Cancer-associated IDH1 mutations defect with metabolic up-

produce 2-hydroxyglutarate regulation of metabolite
Lenny Dangl, David W. White', Stefan Gross', Bryson D. Bennett?, Mark A. Bittinger', Edward M. Driggers', | In ked Wlth bra I n Ca nce r-

Valeria R. Fantin’, Hyun Gyung Jangl, Shengfang Jin', Marie C. Keenan', Kevin M. Marks', VRober’( M. Prins®,
Patrick S. Ward*, Katharine E. Yen', Linda M. Liau?, Joshua D. Rabinowitz?, Lewis C. Cantley®, Craig B. Thompson®,
Matthew G. Vander Heiden't & Shinsan M. Su'




The Metabolome and Its Measure

Metabolome = small molecules <1000 molecular weight

Human metabolome: 20,000 aqueous + 200,000 lipid metabolites

Dark
Metabolome

MOre
Global Profiling M@tabo,,-te
>2000 aqg. metabolites S

~<  Targeted Profiling
Hybrid \ 54500 aq. metabolites
Methods
Quantitative

10-80 ag.
metabolites

No Universal Detector for Metabolomics




NW-MRC '\r\)orfhvi(est Metabalomics Research, Center

HOME | SERVICES | GETTING STARTED | RESEARCH ' INSTRUMENTATION | USEFUL LINKS

Metabolomics Capabilities

> Targeted Metabolomics

> Untargeted Metabolomics
> Unknown identification Quantitative analysis of known metabolites Global profiling or qualitative analysis
. Bioinformatics Expertise within biological pathways of biological matrices

> New Assay Development
> Metabolic Flux Analysis
> Validation Studies

Northwest Metabolomics Research Center
nwmetabolomics.org

Network-based metabolite annotation by Quantitative validation of biomarker
MS2 spectra, NMR candidates




Metabolomics Methods and Applications

Q. N
g
E U/‘ él{\ A ))” £
p— ‘j‘\ () )
., Bl UE
g o g B
H 3 p ¢ PN TQ/@ 1
Analysis of complex =1l \\ f y\\ EXW
. . U L. s =260 | Q\ )2 =(
biological samples/systems: o= == <v ¥

B==
—
="

1000’s of small molecules

Identifying Drug Targets Early Disease Detection
&

Transf:\tion Sys Bio

W a i i Oxﬂgacetate Citra\t‘e 1 trr
0.8 - A .
VYV VW Malate Isocitrate _EOG Statistical Modeling
Biospecimens t CYCLE E 0s |
Fumarate 2-Oxo-glutarate 5 )
77
0.2 -
Succinate‘/ Succinyl-CoA 0 . .
/ Mechanistic Studies: 0 02 04 06 08 1
i i 1-Specificit
Unknown Identification Tracing Altered Pa thways\ Y Yy

T T

H \‘H“’ X
” RN -k Q“‘b‘\ \

MS or NMR

Biomarkers

Metabolite Detection

Scores on LV3(38.18 o)

Gowda & Raftery
J. Magn. Reson. 2015




Bioinformatic Analysis

Broad range of analyses performed on metabolomics
data for
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Typical Metabolomics Data Analysis Workflow

Global Profiling Data
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Weight

Weight

Simple Example of Machine Learning:
Principal Component Analysis (PCA)
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PCA Procedure for Metabolomics
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Global Metabolomics of Esophageal Cancer

Analysis of serum samples from patients with EC, at risk patients and healthy controls

PLS-DA score plot for the whole PLS-DA score plot for the whole
NMR spectra

LC-MS spectra

Control
Cancer * Normal
BE s Cancer
HGD + BE
A HGD
—~ §
X <
3 N
@/ (42]
; >
|
b2b40
However, the clinically relevant comparison, Zhang J, et al. ] Thorac Cardiovasc Surg., 2011

. . . . Zhang J, et al. PlosOne, 2012.
BE vs EC, is harder to distinguish. Buasget al. Metabolomics, 2017



Diagnostic Development Using Metabolomics

= Diagnostic biomarkers typically
= have excellent accuracy, >90%
= 0dds ratios of ~100
= Used to identify disease in 1 patient



No.3 leading cancer type in the US.
No.3 cause of cancer death in the US.
Five-year Relative Survival Rates:

= Local: 90%

= Regional: 70%

= Distant: 12%

Picture source: AGAJournals.org

Early detection gives more therapy options
and saves lives

American Cancer Society, Surveillance Research



CC can develop for 10-
20 years before polyps
convert to cancer.

Risk factors:

Age

Race

Gender

Smoking

Diet

Diabetes

Other cancers
Industrial Countries

Colon Cancer Development

Spread to other organs




Classical Screening Tests

Colonoscopy Stool Test

F

N A e
Blackdoctor.org Nytimes.com

Blood test?




Drawbacks

Low sensitivity (43% for FOBT, 70% for FIT)

New tests provide higher sensitivity but more false positives
Invasiveness

Potential risks of complications

Experience of pain and discomfort

Low compliance rate (<60% for colonoscopy)



Study Information

Total CRC Polyps Healthy
n=234 n=66 n=76 Control n=92
Age Median 58 56 57
Min 27 37 18
Max 88 86 80
Gender Male 30 37 45
Female 36 39 47
Cancer
stage Stage I/11 21 — —
Stage 111 17 — —
Stage IV 28 — —
Colon
Diagnosis Cancer 39 — —
Rectal
Cancer 27 — —

= 114 metabolites detected by targeted LC-MS
= Clinical info: age, gender, BMI, smoking, alcohol, diagnosis

Zhu et al., J. Prot. Res.



Single Metabolite Performance

95% Confidence Interval

Metabolites AUROC Std. Error Sensitivity Specificity Accuracy
Lower Bound Upper Bound

Histidine 0.719 0.040 0.640 0.798 0.924 0.467 0.658
Glyceraldehyde 0.702 0.042 0.619 0.785 0.742 0.641 0.686
Glycochenodeoxycholate 0.688 0.042 0.605 0.770 0.879 0.435 0.620
Hyppuric Acid 0.684 0.044 0.597 0.771 0.591 0.794 0.709
Methionine 0.680| 0.043 0.596 0.764 0.667 0.630 0.646
Lysine 0.680| 0.043 0.595 0.764 0.530 0.794 0.684
Linolenic Acid 0.668 | 0.044 0.581 0.755 0.439 0.880 0.696
Glycocholate 0.665 0.043 0.580 0.749 0.742 0.565 0.703
Glutamic acid 0.660 | 0.044 0.574 0.746 0.606 0.707 0.665
N-AcetylGlycine 0.657 0.044 0.570 0.744 0.788 0.511 0.623
2'-Deoxyuridine 0.656 | 0.044 0.571 0.742 0.576 0.685 0.639
Allantoin 0.653 0.043 0.568 0.739 0.606 0.663 0.639
Glutamine 0.652 0.044 0.566 0.739 0.546 0.707 0.639
Aspartic Acid 0.649 0.046 0.559 0.739 0.439 0.859 0.684
Dimethylglycine 0.649 0.044 0.562 0.736 0.606 0.663 0.639
Maleic Acid ) 0.649 0.045 0.560 0.737 0.606 0.707 0.665
Hydroxyproline/Aminolevulinate 0.647 0.044 0.561 0.733 0.682 0.587 0.627
Adenylosuccinate 0.642 0.045 0.553 0.731 0.439 0.815 0.658
Malonic Acid/3HBA 0.637) 0.048 0.542 0.731 0.546 0.815 0.703




Multi-Metabolite Approach

When single metabolites don’t work, combine them: Cologard Stool Test

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Multitarget Stool DNA Testing
for Colorectal-Cancer Screening

Thomas F. Imperiale, M.D., David F. Ransohoff, M.D., Steven H. ltzkowitz, M.D.,
Theodore R. Levin, M.D., Philip Lavin, Ph.D., Graham P. Lidgard, Ph.D.,
David A. Ahlquist, M.D., and Barry M. Berger, M.D.

Validation

Uses BMP4, NDRG4, KRAS gene panel
+ FIT for human hemoglobin.
94% accuracy

Results: | . | 10,000 patient trial (300 CRC patients)
Using 12 metabolites + clinical variables: Accuracy = 93% $100M, FDA approved

Promising, but not fantastic. -~ Now covered by insurance
Performance typically degrades in validation process.



Diagnostic vs Risk Biomarkers

= Diagnostic biomarkers typically
= have excellent accuracy, >90%
= 0dds ratios of ~100
= Used to identify disease in 1 patient

= Risk biomarkers are used
= At population level
= Odds ratios are typically 2-6 or so
= Used to affect behavior at a population level



Nutrition and Physical Activity Assessment Study

Women’s Health Initiative (WHI)

Goals:

1) Identify potential biomarkers of macro and micro-nutrients
2) Use these biomarkers to correct FFQs
3) Improve disease risk prediction based on improved dietary information

NPAAS Feeding Study
153 subjects

Blood, 24 hr urine, Blood, 24 hr urine Blood, spot urine
spot urine

_ Calculate intake values for
Develop cross validated  gach nutrition variable

biomarkers of nutrients  pevelop calibration equations

using metabolomics for each nutrition variable
data. Use FFQ 4-day food record  Calculate nutrition
and 24-hour dietary recall. related disease risk for
CRC and BC without use
Metabolomics: Blood Urine of FFQ.
Targeted LC-MS NMR

Lipidomics GC-MS



Biomarker-Calibration Approach

/7
Problem: /7
Z
Food frequency 9 " High
data are very i /
. = Low y BMI
not reliable 5 BMI o
Bl —7
Q
& 7/
Solution: Actual Intake
Calibration

Self-report

Biomarker

The biomarkers are measured in a representative subset, then can be extrapolated to larger datasets

Regression Equations

ﬁ Calibrated
Measure




Metabolomics Data and Analysis

153 study samples
19 blinded duplicate samples used to test reproducibility

Features | Metabolites | <20% Ave. CV
(#) (#1D'd) Missing | (%, BD)
664 5.5

Serum Lipidomics 1070
Serum LC-MS/MS 303 155 7.2
Urine (24-hr) GC-MS 285 138 31.3
Urine (spot) GC-MS 285 135 31.3
Urine (24 hr) NMR 57 57 4.0
Urine (spot) NMR 57 57 1.2

Statistical Analysis

QC normalization

Log transformation

80/20 split for training/testing

Regression analysis using LASSO

Penalty parameter determined using 5-fold CV of training set
Regression model built to test correlation: outcome vs predicted




Results: Correlation of Metabolites and Intake

CV-R2 CV-R2 CV-R2w/DLW correlation
Protein (%E) 36.3% 45.0% 0.67
Protein (g/d) 52.0% 0.72
Carbohydrate (%E) 37.3% 37.0% 0.61
Carbohydrate (kcal/d) 55.9% 0.75
Energy (kcal/d) 55.5% 0.74

= Multiplatform approach allows broader metabolome coverage and a
comparison of data but is complicated to put together.

= Improved results when personal characteristics and DLW/UN included.

= Habitual diets are most realistic, as they don't perturb the gut microbiome
as much. But they also limit the study unless efforts are made to find
participants with widely different diets.

= Urine>blood and blood+urine for carbohydrate measures. But DLW s still
very important in the model.

Zheng et al., Eur J. Nutr. 2021



Metabolite Based Disease Risk Modeling

Based on calibration equations, metabolite biomarkers were then
extrapolated into case-control set (~1500 samples with outcomes
data) to identify disease/diet associations and disease risk.

NPAAS Feeding Study
153 subjects

Develop metabolite Calibrate FFQs Use calibrated FFQs

biomarkers for: using metabolite to predict disease
biomarkers as risk and compare to

Animal protein intake measures outcomes data.

Plant protein,

Carbohydrates Cancer risk

Dietary fiber CVD risk

Diabetes risk



Biomarker-Calibrated Macronutrient Intake and Chronic
Disease Risk among Postmenopausal Women

Biomarker Calibrated Risk (Hazard Ratios) for 20% Increase in:

Outcome Protein Total Protein Carbohydrate Fiber Fat
(Participants) Density Density Density Density Density
Breast Cancer
(5,311) 1.03 0.92 0.84 0.97 1.16
Colon Cancer
(1,101) 1.28 0.59 0.93 0.99 1.26

Heart Disease
(2,869) 1.20 0.75 0.90 0.80 113

T2 Diabetes
(12,145) 1.03 1.11 0.74 0.93 1.19
Animal protein 1t Risk CC, HD 1 Plant protein 1 Risk |
Carbohydrate 1 Risk BC, T2D | Fiber 1 Risk HD and T2D |
Fat 1 Risk BC, CC, HD, T2D 1

Analyses included total energy intake, in Women'’s Health Initiative cohorts (n= 81,894) of postmenopausal
U.S. women enrolled during 1993-1998 at 40 U.S. clinical centers and followed through February 2020.

Prentice et al., J Nutr, 2021, 2023



Targeting Cancer-Altered Metabolism

Cancer metabolism: a therapeutic
perspective

Ubaldo E. Martinez-Outschoorn'*, Maria Peiris-Pagés®**, Richard G. Pestell’,

Federica Sotgia®** and Michael P. Lisanti***

Nature Reviews: Clinical Oncology 14, 11 (2017)

Tumors have high uptake of nutrients
to to generate high levels of ATP and
biosynthesis to support progression.

Targeting glycolysis and
mitochondrial metabolism as well as
other substrates should be effective

Details on metabolic levels and fluxes
will be key to evaluate metabolic
approaches.
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Targeting Altered Metabolism in Colon Cancer

Altered metabolism in cancer has a long history dating back to 1936
experiments by Otto Warburg.

Over the past decade interest has grown with the possibility of developing
metabolite focused therapies using known inhibitors as a start.

Here we investigated Fbw7 mutation

two colon cancer lines LoVo
and found quite different Het118
glucose glucose

metabolic alterations.

Pan-Cancer lipids
Transfer Learning

serine lactate y; l

Isotope tracer studies
identified key pathways
and suggested possible

inhibitor strategies. foxPHOS @

/ Mitochondrial

glutamine Signature Genes

lactate

citrate ==

@ﬂ
foxpHOS
~

glutamine

Davis et al., PNAS 2018



Mechanism-Based Therapy Combinations

Differentiated tissue Proliferative Tumor Free fatty acids
— tissue <~.
1 J! e Jo o . L,& Glucose
6 L.
+Oi/ k\oz ATP
+/_02 °,
v RS
N

Glucose Glucose Glucose Lactate «— Pyruvate
O, Pyruvate l O, Pyruvate ATP v
Pyruvate it o Acetyl-CoA
l Oxaloacetate/& Palmitate — Sapienate
Lactate Citrate
f TCA | D
Lactate . cycle ) Malonyl-CoA
Succinyl-CoA T
a-KG @
Oxidative Anaerobic Aerobic .\/
phosphorylation glycolysis glycolysis Acetyl-CoA
~36 mol ATP/ 2 mol ATP/ (Warburg effect)
mol glucose mol glucose ~4 mol ATP/mol glucose
Cancer cells prioritize glycolysis over oxidative Altered fatty acid metabolism is a hallmark of many

phosphorylation, even with oxygen. cancer types, which can be targeted.
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v" A synergistic reduction in cancer cell
viability when glucose deprivation and
fatty acid inhibition were combined.

v" The accumulation of cytotoxic
saturated fatty acids were observed.

v Additional changes in cellular

metabolism and lipid composition may
Initiate cell death responses.

Metabolomics. 2024



Anti-BACH1 + Metformin Combination Therapy

LETTER

https://dei.org/10.1038/s41586-019-1005-x

Effective breast cancer combination therapy
targeting BACHI and mitochondrial metabolism

Jiyoung Lee!, Ali E. Yesilkanal!, Joseph P. Wynne!, Casey Frankenberger!, Juan Liu?, Jielin Yan!, Mohamad Elbaz!, Daniel C. Rabe',
Felicia D. Rllstglnd}'l. Payal Tiwari', Elizabeth A. Grossman®*?, Peter C. Hart®, Christie Kang®, Sydney M. Sanderson?,
Jorge Andrade’, Daniel K. Nomura®*>, Marcelo G. Bonini®®, Jason W. Locasale” & Marsha Rich Rosner'*

« TNBCs overexpress BACH1, heme-binding transcription
factor target mitochondrial metabolism.

« BACHI1 decreases glucose utilization and affects ETC gene
expression.

 Addition of metformin, a diabetes drug, that also targets
ETC, suppressing tumor growth.



Off-label Drug and Supplement Combination

www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 40), pp: 67269-67286

Research Paper

Vitamin C and Doxycycline: A synthetic lethal combination

therapy targeting metabolic flexibility in cancer stem cells
(CSCs)

Ernestina Marianna De Francesco!?, Gloria Bonuccelli?, Marcello Maggiolini?,
Federica Sotgia® and Michael P. Lisanti®

« Combination of an antibiotic and Vit C to target mitochondria
 Studied cancer stem cells that are often difficult to kill using chemotherapy

« Combinations were effective in reducing the number of cancer cell clusters



Cell Metabolism and Cancer

Lots of interest in the use of anticancer compounds and diets to
“modulate” the metabolism and “improve” chemotherapy
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William Li: Can we eat to starve cancer?
Video on TED.com
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Experimental Plan

Cell samples +
inhibitors/dietary
compounds
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Conclusions and Perspectives

New tools in metabolomics are providing improved methods
for identifying changes in metabolism

A number of studies are pointing to detectable altered
metabolism in cancer and other diseases, plus aging, etc....

Biomarker discovery and validation are key to the
development of new diagnostic tests

Still many challenges lie ahead including understanding
confounding factors and basic mechanisms

|dentifying metabolic risk factors, such as dietary intakes can
benefit human health at the population level

And identifying metabolic vulnerabilities in cancer cells can
lead to novel therapeutics, including combination therapies.

Advances In new metabolomics tools promises new
discoveries in metabolism, which hopefully will lead to better

diagnostics and treatments
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Receiver Operating Characteristics Analysis

ROC curve

e 100% Sensitivity
Sensitivity: correct identification of people who
have the disease

Sensitivity vs Specificity

100 patients: 1
90 correct

Sensitivity = 90/100 “

=90%
Specificity: correct identification of people who
do not have the disease . A\ ;
100 healthy: : AUQ (area\ upd e cunve
70 correct

Specificity = 70/100
=70%

Sensitivity

0
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