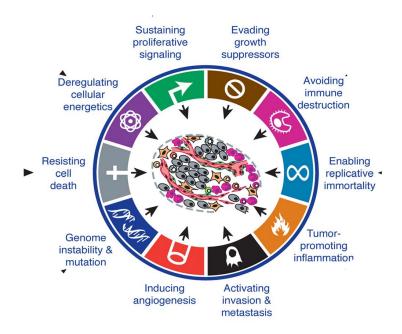

- First Principles: Genetics & Reductionism
 - **Cancer is More than "Just Genetics"**
 - Examples of the use of Big Data in
 - **Systems Biology Approaches**

First Principles

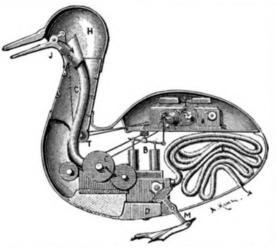
- Cancer is a genetic disorder caused by genetic alterations to DNA
- Most mutations are acquired, some are inherited

Accumulation of mutations leads to the hallmarks of cancer (Hanahan and Weinberg, 2011).

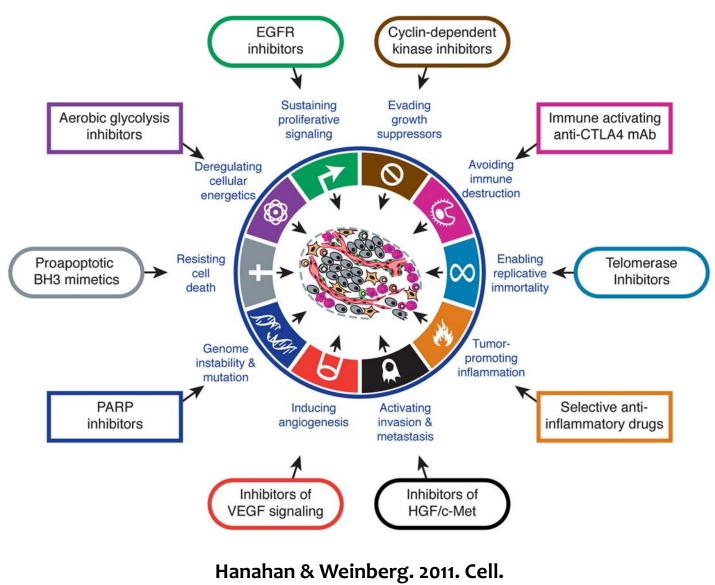
Hallmarks of Cancer



Hanahan & Weinberg. 2011. Cell.


as of July 2024: 76,104 citations

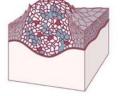
"Traditional View: Cancer is a disease of uncontrolled growth due to genetic mutations"

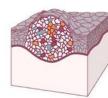


Reductionism: the predominant research paradigm

• Much like a mechanic who repairs a broken car by locating the broken part, a reductionist approach to understanding cancer aims to identify an isolatable abnormality and then develop a treatment to target that abnormality. Implicit within this approach is the motivation and approach that cancers have potential singular target(s).

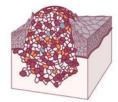
Targeting Cancer


as of May 2022: 60,017 citations


The Limits of Reductionism

Low rate of clinical trial success

"Cancer therapeutics currently have the lowest clinical trial success rate of all major diseases.... Partly as a result of the paucity of successful anti-cancer drugs, cancer will soon be the leading cause of mortality in developed countries.


EDITORIAL Rethinking cancer: current challenges and opportunities in cancer research Ross Cagan, Pablo Meyer Disease Models & Mechanisms 2017 10: 349-352: doi: 10.1242/dmm.030007

Responding to Treatmen

esistant cells)

Before Treatment Tumors consist of cancer cells with different molecular features, which may make them sensitive or resistant to different types of treatments.

Developing Drug Resistance The cancer cells that are resistant will multiply, contributing to the re-growth of the tumor

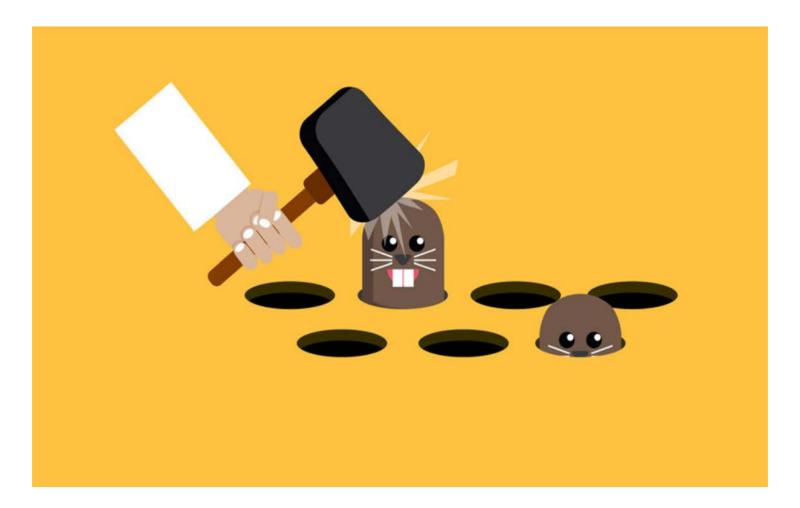
KEY

Although, a drug may kill some cancer

cells (the sensitive cells), a subset of

them almost invariably survives (the

• Development of Drug Resistance

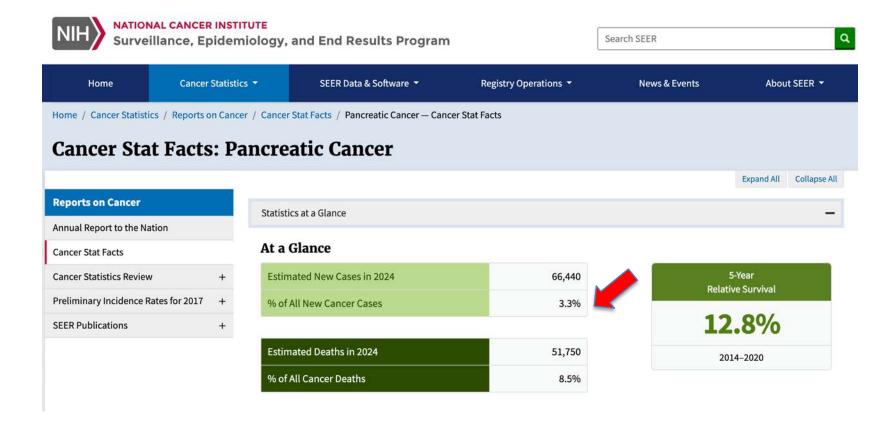

"... nearly all current treatments face the same problem: for many patients, they ultimately stop working. Commonly known as drug resistance, this phenomenon is one of the most challenging problems facing cancer researchers and patients today."

"I think the next frontier in precision genomic medicine is figuring out how to circumvent resistance"

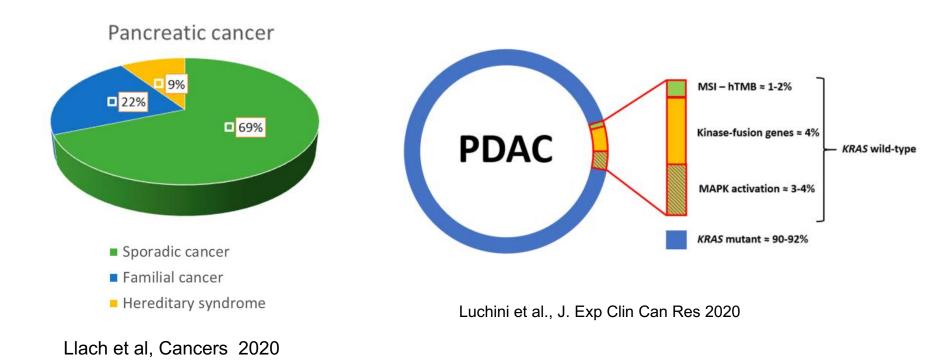
-- Laurie Glimcher, M.D., President, Dana-Farber/Harvard Cancer Center

cancer.gov

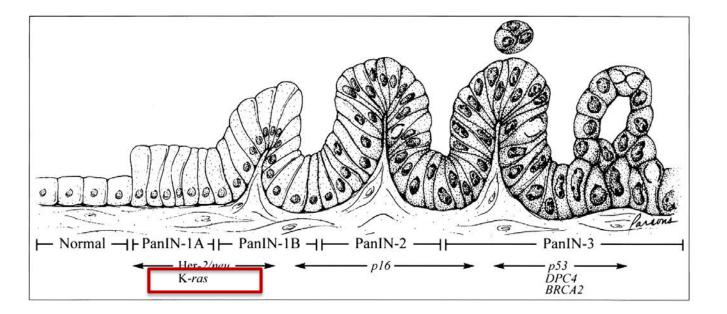
The Limits of Reductionism



Cancer is More than "Just Genetics"


The traditional view of cancer emphasizes a genes-first process for initiation and tumorigenic development.

Recent studies however, point to "System Breakdown"...


Pancreatic Cancer

Mutations in Kras Drive Most Pancreatic Cancers

PDAC progression model

Hruban et al., Clinical Cancer Research 2000

"PanIN": pancreatic intraepithelial neoplasia

Study of Normal Adult Pancreas Challenges a Long-Held Model

RESEARCH ARTICLE

Analysis of Donor Pancreata Defines the Transcriptomic Signature and Microenvironment of Early Neoplastic Lesions

Eileen S. Carpenter^{1,2}, Ahmed M. Elhossiny³, Padma Kadiyala⁴, Jay Li⁵, Jake McGue⁶, Brian D. Griffith⁶, Yaqing Zhang⁶, Jacob Edwards⁶, Sarah Nelson⁶, Fatima Lima⁶, Katelyn L. Donahue⁷, Wenting Du⁶, Allison C. Bischoff⁷, Danyah Alomari¹, Hannah R. Watkoske⁶, Michael Mattea⁸, Stephanie The⁹, Carlos E. Espinoza⁶, Meredith Barrett⁶, Christopher J. Sonnenday⁶, Nicholas Olden¹⁰, Chin-Tung Chen¹¹,

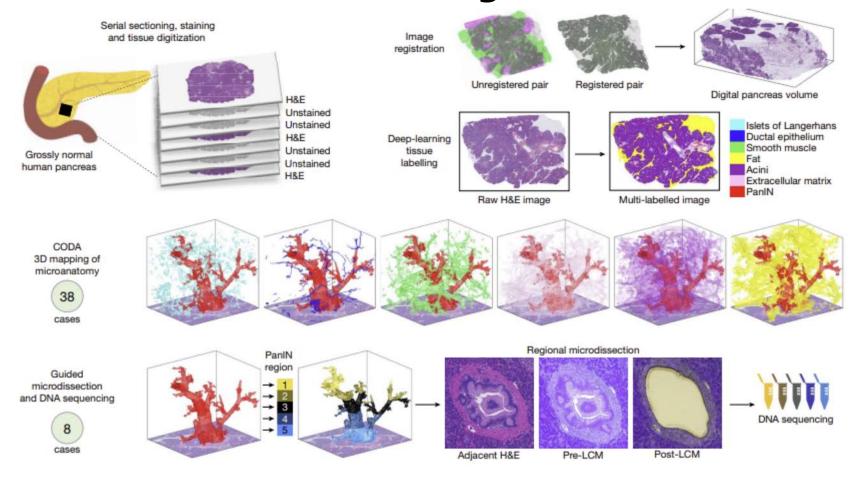
Nicole Peterson¹², Valerie Gunchick¹², Vaibhav Sahai^{2,12}, Arvind Timothy L. Frankel^{2,6}, and Marina Pasca di Magliano^{2,6,16}


Article

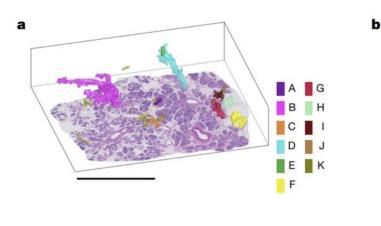
3D genomic mapping reveals multifocality of human pancreatic precancers

https://doi.org/10.1038/s41586-024-07359-3	Alicia M. Braxton ¹²¹⁴ , Ashley L. Kiemen ^{13,414} , Mia P. Grahn ³ , André Forjaz ³ , Jeeun Parksong ¹ ,		
Received: 11 January 2023	Jaanvi Mahesh Babu ¹ , Jiaying Lai ⁵ , Lily Zheng ^{5,6} , Noushin Niknafs ⁴ , Liping Jiang ⁷ , Haixia Cheng ⁷ , Qianqian Song ⁷ , Rebecca Reichel ¹ , Sarah Graham ¹ , Alexander I. Damanakis ¹ ,		
Accepted: 26 March 2024	Catherine G. Fischer ³ , Stephanie Mou ¹ , Cameron Metz ¹ , Julie Granger ¹ , Xiao-Ding Liu ^{1,8} , Niklas Bachmann ¹ , Yutong Zhu ³ , YunZhou Liu ⁵ , Cristina Almagro-Pérez ³ , Ann Chenyu Jiang Jeonghyun Yoo ³ , Bridgette Kim ³ , Scott Du ³ , Eli Foster ³ , Jocelyn Y. Hsu ³ , Paula Andreu River		
Published online: 1 May 2024			
Check for updates	Linda C. Chu ⁹ , Fengze Liu ⁹ , Elliot K. Fishman ⁹ , Alan Yuille ¹⁰ , Nicholas J. Roberts ^{1,4} ,		
	Elizabeth D. Thompson ¹ , Robert B. Scharpf ⁴ , Toby C. Cornish ¹¹ , Yuchen Jiao ⁷⁰²		
	Rachel Karchin ^{4,6} , Ralph H. Hruban ^{1,4} , Pei-Hsun Wu ³ , Denis Wirtz ^{1,3,4,15} & Laura D. Wood ^{1,4,13,15}		

Nature | Vol 629 | 16 May 2024


Most of us have PanINs already

Carpenter et al., Cancer Discovery 2023


in collaboration w/ Pancreatic Disease Initiative at the University of Michigan and Gift of Life Michigan

3D Image Reconstruction using Machine Learning

Braxton et al., Nature 2024

Multiple Kras Mutations Co-exist within each patient

800 AAS 800 "...the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic *KRAS* hotspot mutations."

Braxton et al., Nature 2024

Farmer's Eyelid Study

TUMOR EVOLUTION


High burden and pervasive positive selection of somatic mutations in normal human skin

Iñigo Martincorena,¹ Amit Roshan,² Moritz Gerstung,¹ Peter Ellis,¹ Peter Van Loo,^{1,3,4} Stuart McLaren,¹ David C. Wedge,¹ Anthony Fullam,¹ Ludmil B. Alexandrov,¹ Jose M. Tubio,¹ Lucy Stebbings,¹ Andrew Menzies,¹ Sara Widaa,¹ Michael R. Stratton,¹ Philip H. Jones,^{2*} Peter J. Campbell^{1,5*}

Bill Hinton Photography / Getty Image:

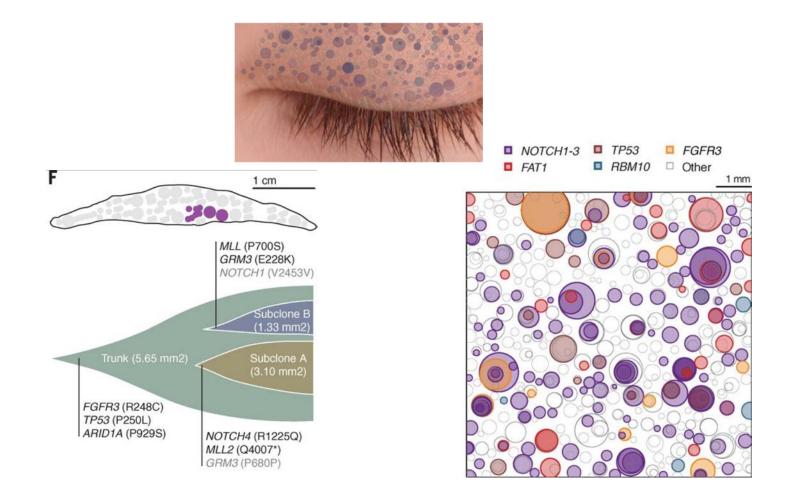
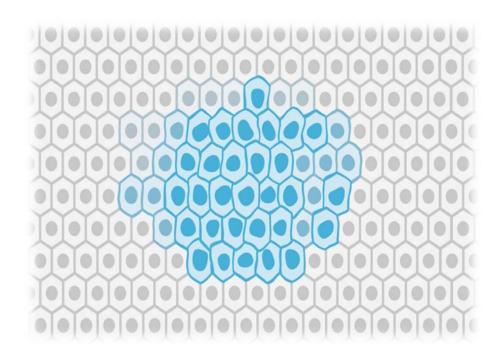


Fig. 4 Mutant clone sizes and clonal dynamics in normal skin

"Positive selection on driver mutations is strong only during the initial expansion of mutant clones"


Genetic Mutations are Not Sufficient for Cancer

Gene	Type of alteration	Benign or premalignant condition	Frequency of alteration in benign condition (%)	Examples of drug(s) that can potentially target the alteration	Examples of malignancies associated with this gene alteration	Mechanism
BRAF	V600E, D594V, V599E	Melanocytic nevi	70-88% [<u>3,4,5,6,7,8,9,10,11</u> , <u>12</u>]	BRAF and/or MEK inhibitors such as dabrafenib and trametanib [13, 14]	Melanoma	RAS-RAF-MEK-ERK pathway upregulation [15]
NRAS	Q61K	Giant congenital melanocytic nevi	6-14% [<u>10</u> , <u>11</u>]	MEK inhibitors [12] such as trametinib [16]	Melanoma	RAS-RAF-MEK-ERK pathway upregulation [15]
	Q61K and Q61R	Melanocytic nevi	70–95% [<u>17, 18]</u>	MEK inhibitors such as trametinib [16]	Melanoma	RAS-RAF-MEK-ERK pathway upregulation [15]
FGFR3	R248C, S249C, G372C, S373C, A393E, K652E, K652M	Seborrheic keratosis	~18-85% [<u>19,20,21,22</u>]	FGFR inhibitors such as erdafitinib [23]	Urothelial carcinoma	Activation of the FGF/FGFR machinery [24]
	R248C, G372C, G382R	Epidermal nevi	33% [25]	FGFR inhibitors such as erdafitinib [23]	Urothelial carcinoma	Activation of the FGF/FGFR machinery [24]
PIK3CA	E542K, E545K, H1047R	Seborrheic keratosis	~16% [20]	PIK3CA inhibitors such as alpelisib [26]	Breast cancer	PI3K-AKT-mTOR pathway activation
	M1043V	Endometriosis	~ 4% [27]	PIK3CA inhibitors such as alpelisib [26]	Breast cancer	PI3K-AKT-mTOR pathway activation
	H1047L, H1047R	Normal esophagus mucosa	Not listed [28]	PIK3CA inhibitors such as alpelisib [26]	Breast cancer	PI3K-AKT-mTOR pathway activation
ALK	TPM3-ALK, TPM4-ALK	Inflammatory myofibroblastic tumor	~ 50% [29]	ALK inhibitors [30] such as alectinib [31]	Non-small cell lung cancer	ALK pathway activation [32]
NOTCH1	Loci not specified	Aging esophagus	12-80% [33]	No specific inhibitors approved	Colon cancer	Wnt-beta-catenin pathway activation [34]
KRAS	G12V or G12D	Arteriovenous malformations in brain	~ 63% [<u>35</u> , <u>36</u>]	MEK inhibitors such as trametinib [16]	Colorectal and pancreatic cancer	RAS-RAF-MEK-ERK pathway upregulation [15]
	G12C, G12V, G12A, G12D, G12R	Endometriosis	~ 21% [27]	MEK inhibitors such as trametinib [16]	Colorectal and pancreatic cancer	RAS-RAF-MEK-ERK pathway upregulation [15]
	Q61R	Normal testis	Not listed [28]	MEK inhibitors such as trametinib [16]	Colorectal and pancreatic cancer	RAS-RAF-MEK-ERK pathway upregulation [15]
TP53	R177S, Q192L, R196*, K139R, H193Y, E224fs, N239S	Rheumatoid arthritis synovium	17-46% [<u>37</u> , <u>38</u>]	Bevacizumab may target angiogenesis upregulation that results from TP53 mutations [39]	Serous ovarian cancer (<i>TP53</i> mutations are common across cancers)	TP53 is a tumor suppressor gene [40]
	Loci not specified	Aging esophagus	2-37% [<u>33]</u>	Bevacizumab may target angiogenesis upregulation that results from TP53 mutations [39]	Serous ovarian cancer (<i>TP53</i> mutations are common across cancers)	TP53 is a tumor suppressor gene [40]
CTNNB1	T41A and S45P	Desmoid tumor	88% [<u>41</u>]	COX-2 inhibitors [42] such as celecoxib [43], as well as soratenib (which can suppress CTNNB1- mediated activation of the WNT pathway) [13, 14, 44]	Adrenocortical cancers	Wnt-beta-catenin pathway activation [45]
FGFR2	Y376C, P286S	Keratinocytic epidermal nevus	5-10% [46]	FGFR inhibitors such as erdafitinib [23]	Urothelial carcinoma	FGF/FGFR machinery [24]
AKT, MAPK, and AMPK pathway genes	54 5-	Alzheimer's disease	~27% [47]	mTOR inhibitors or MEK inhibitors	Multiple tumor types	Increases tau phosphorylation

Benign conditions with oncogenic driver mutations

Adashek, J.J. et al. 2020. Genome Medicine

Cancer is not a disease of uncontrolled growth, but of *improperly*-controlled growth

A need for Systems Biology Approaches

December 21, 2017

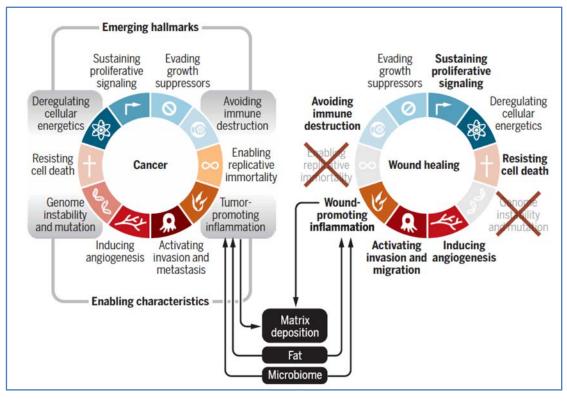
N Engl J Med 2017; 377:2493-2499 DOI: 10.1056/NEJMms1706744

MEDICINE AND SOCIETY

Putting the Patient Back Together — Social Medicine, Network Medicine, and the Limits of Reductionism

Jeremy A. Greene, M.D., Ph.D., and Joseph Loscalzo, M.D., Ph.D.

"One disappointment of the postgenomic age is how little the Human Genome Project has taught us to date about human disease. Only a small minority of diseases are caused by monogenic (or oligogenic) disorders. Instead, complex interactions among numerous genetic and environmental factors determine disease phenotype."


EDITORIAL

Rethinking cancer: current challenges and opportunities in cancer research

Ross Cagan, Pablo Meyer

Disease Models & Mechanisms 2017 10: 349-352; doi: 10.1242/dmm.030007

"... cancer is not just a disease of mutated genes but of dysfunctional pathways that no longer limit growth"

Guiding Principles for Cancer Systems Biology ...

Tumors inherit control strategies present in their tissue of origin Both normal and tumor cells participate in communities Dividing line between normal and cancer cells is not sharp To escape control, tumor cells must work within the system

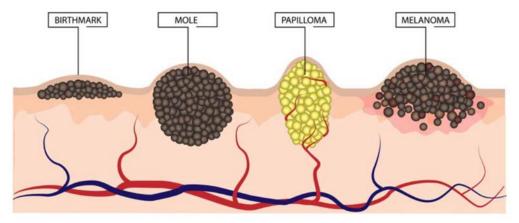
Cancer Biology Needs...

Technologies that embrace complexity (i.e. **Big Data** Generators) Technologies that preserve spatial structures and relationships Approaches that provide quantitative information **Modeling** approaches & analysis pipelines e.g. Models that predict emergent properties of a system

Nevi/Melanoma

🔅 eLife 🛛 😑 Home Magazine Community About

Search Q

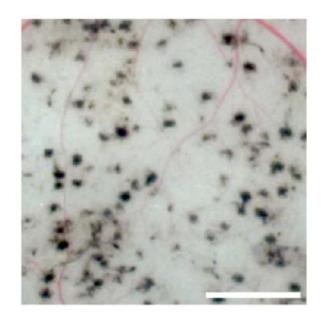

Research Article

Cancer Biology, Computational and Systems Biology

Dynamics of nevus development implicate cell cooperation in the growth arrest of transformed melanocytes

Rolando Ruiz-Vega, Chi-Fen Chen, Emaad Razzak, Priya Vasudeva, Tatiana B Krasieva, Jessica Shiu, Michael G Caldwell, Huaming Yan, John Lowengrub, Anand K Ganesan, Arthur D Lander a see less

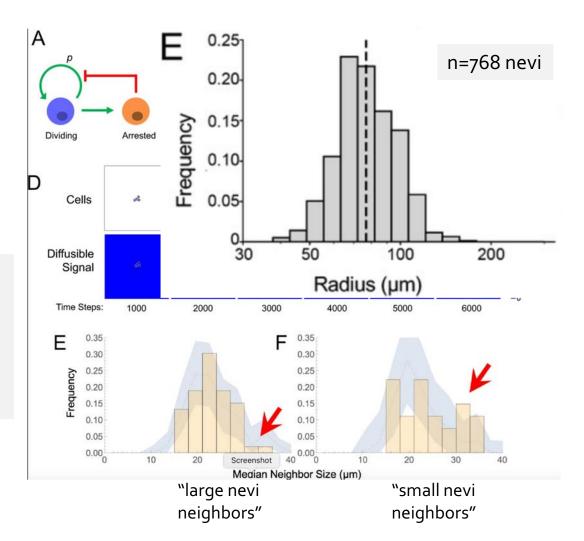
Nevi/Melanoma

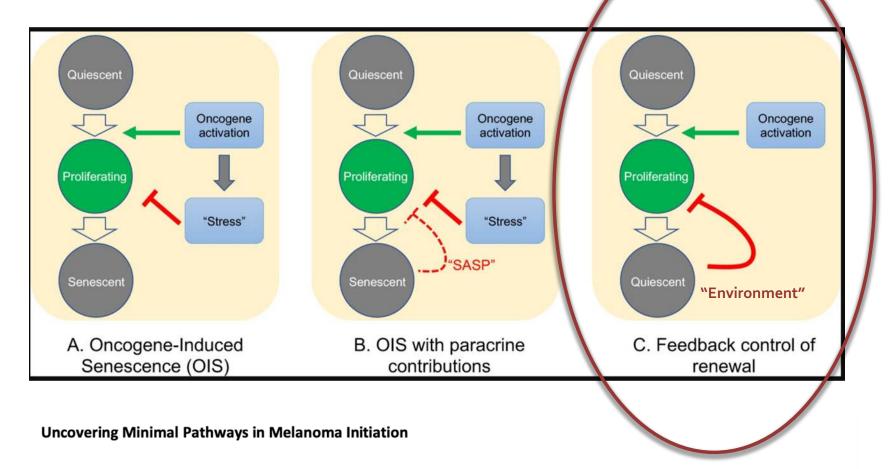


70%-90% of all nevi have Braf^{mut} melanocytes ~50% of melanomas have Braf^{mut}

The lifetime risk for a mole in a 20 year old developing into melanoma by age 80 years is approximately 0.03% for men and 0.009% for women.

Current Model (Cell Autonomous):

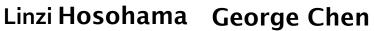

- nevi melanocytes are senescent
- senescence is triggered by oncogenic mutation of Braf, ie. Oncogene Induced Senescence (OIS)


Mathematical simulation: *nevi growth and arrest is non-cell autonomous*

Does a collective process arrest nevi?

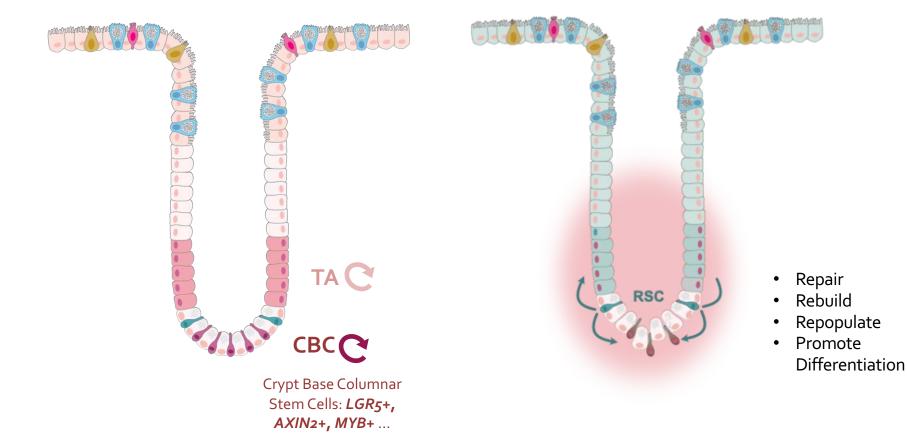
scRNAseq: *no* OIS signatures are evident

A Cell non-Autonomous Model for Nevi/Melanoma

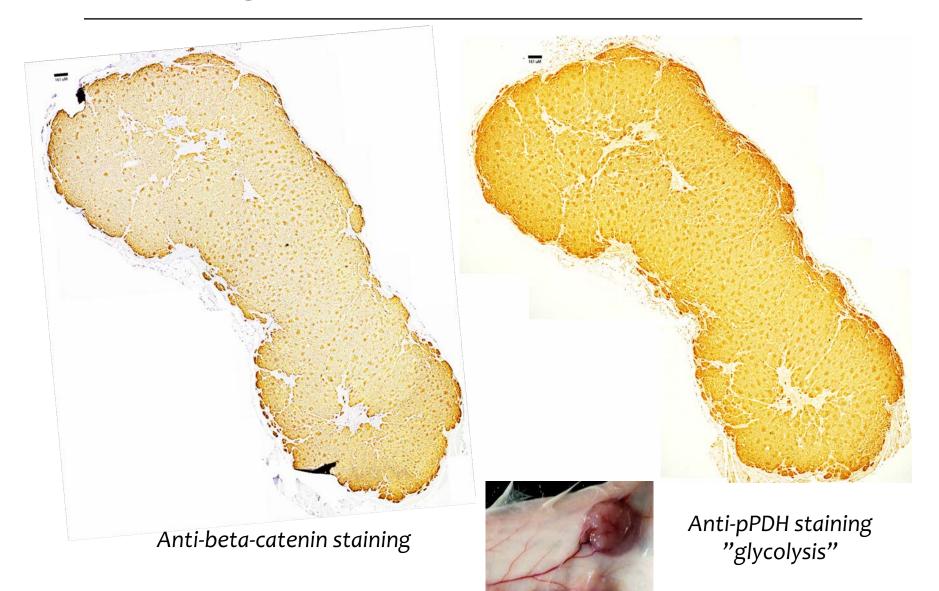


<u>Hui Xiao¹</u>, Jessica Shiu², Chi-Fen Chen², Jie Wu³, Peijie Zhou⁴, Sahil S. Telang², Rolando Ruiz-Vega¹, Qing Nie^{4, 5}, Arthur D. Lander^{1, 5}, Anand K. Ganesan²

Colon Cancer Stem Cells: Patterned Heterogeneity



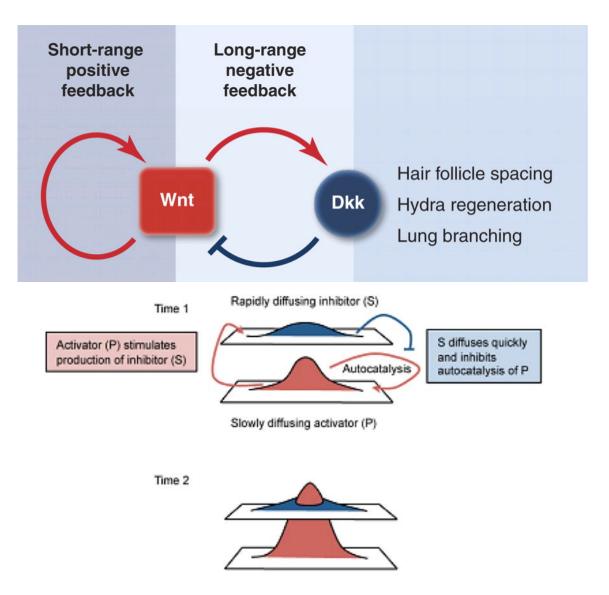
Mary Lee



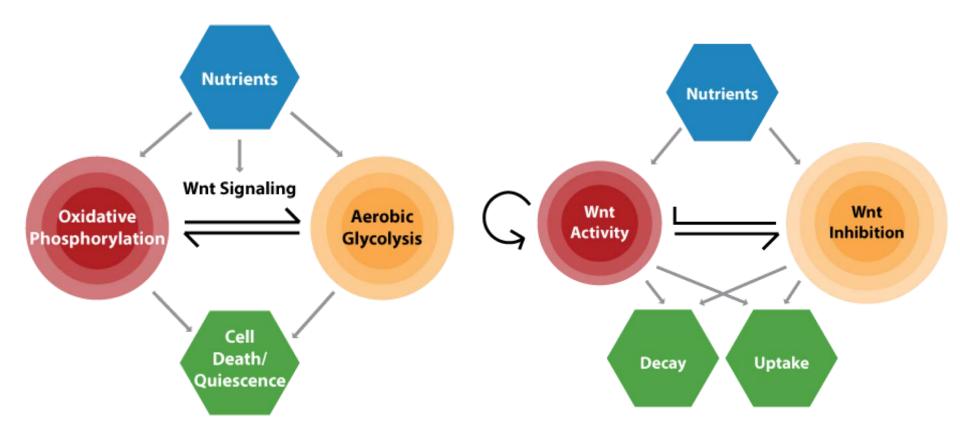
John Lowengrub

Stem Cells in the Intestinal Crypt

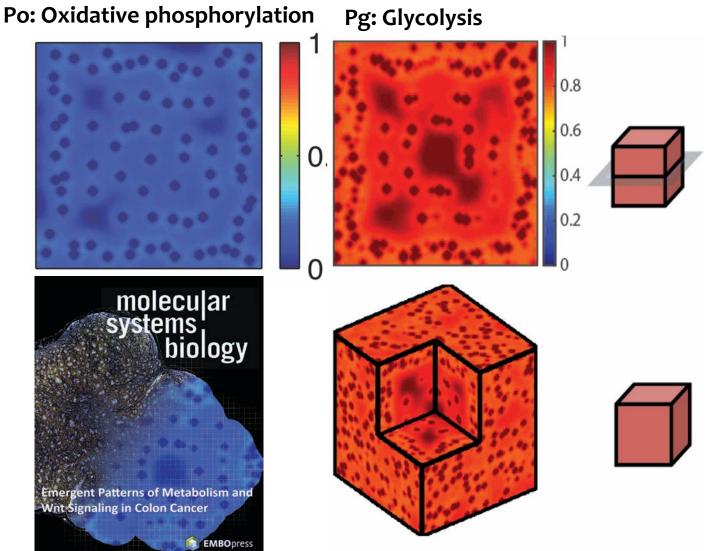
A Turing Pattern of Wnt and Metabolism?


Lee & Chen et al. 2017. Mol. Syst. Biol.

Turing Reaction-Diffusion systems



Reaction-Diffusion Modeling


Adapted from Kondo, et al. Science. 2010 & Gilbert, SF. Developmental Biology. 2000

A Reaction-Diffusion model for Wnt regulation of patterned metabolism

Lee & Chen et al. 2017. Mol. Syst. Biol.

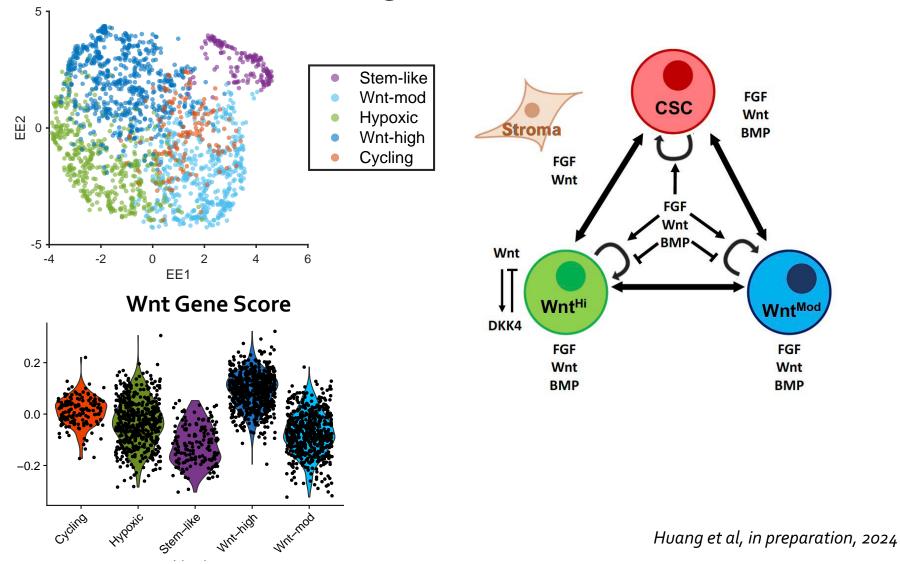
MatLab Simulations

Lee & Chen et al. 2017. Mol. Syst. Biol.

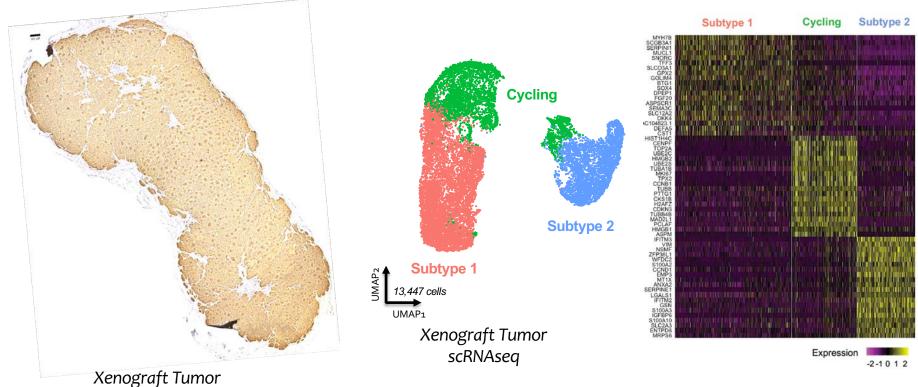
A Reaction-Diffusion Model Prediction

Inhhibition of Wnt signaling will trigger an increase in the diffusion range of Wnt ligands, extending their "reach"

<u>Result</u>: bulk RNAseq of Wnt-inhibited (dnLEF/TCF) xenograft tumors revealed sharply increased expression of SFRPs which are Wnt ligand "diffusers"

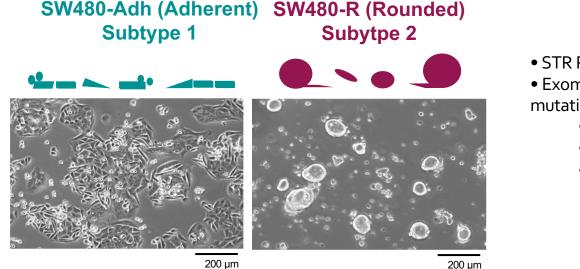


<u>CRC relevance</u>: Radio-Chemotherapy-treated patient rectal tumors (GEO dataset GDS3756).


- Wnt target gene expression declined with treatment and ...
- SFRP-1, -2, -4 expression increased ~5-50 fold

Lee & Chen et al. 2017. Mol. Syst. Biol.

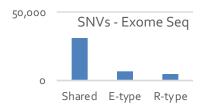
Colon Cancer Cell Heterogeneity in SW480 Xenografted Tumors



Colon Cancer Cell Heterogeneity in SW480 Xenografted Tumors

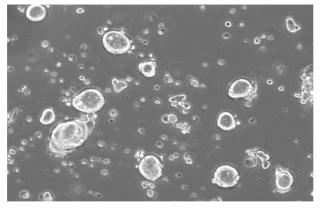
Anti-beta-catenin staining

Two CRC Subtypes Co-exist in SW480 cultures

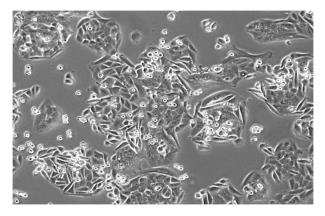

200 µm

Tomita et al. 1992. Cancer Res. 52:6840-7.

- Similar proliferation indices in vitro
- Similar Cancer Stem Cell activities in xenograft experiments (subcutaneous, orthotopic)

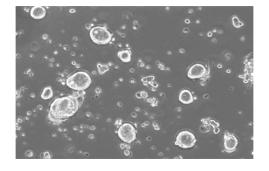

- STR Profiling identical
- Exome Sequencing: vast majority of exome mutations are shared
 - TP53: Pro309Ser; Arg273His; Pro72Arg
 - APC: Gln1338*; Val1822Asp

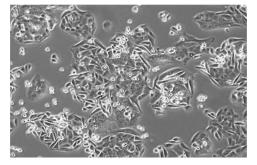
• Kras: Gly12Val

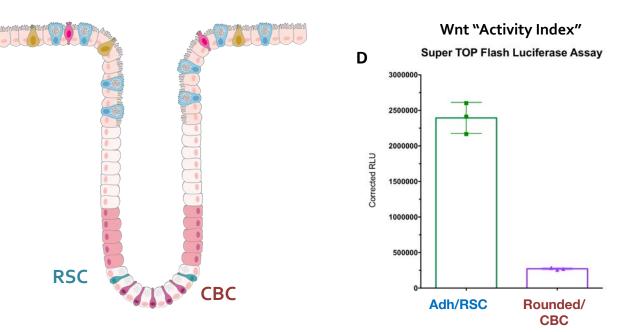

Two Colon Cancer Stem Cell Subtypes "Model" Different Normal Stem Cell Populations

Rounded/CBC

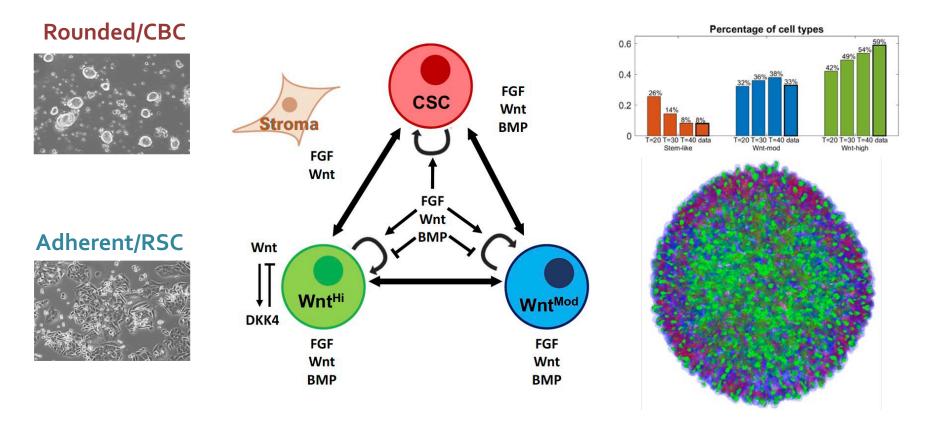
YAP^{off} MYC/MYB LGR5 PROX1 RSC


Adherent/RSC

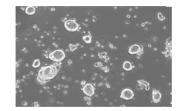

YAP^{oN} Fetal-wounding LGR4 Wnt5a


Different Intrinsic Wnt Signaling in two Colon Cancer Stem Cells

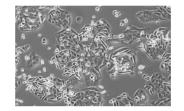
Rounded/CBC



Adherent/RSC

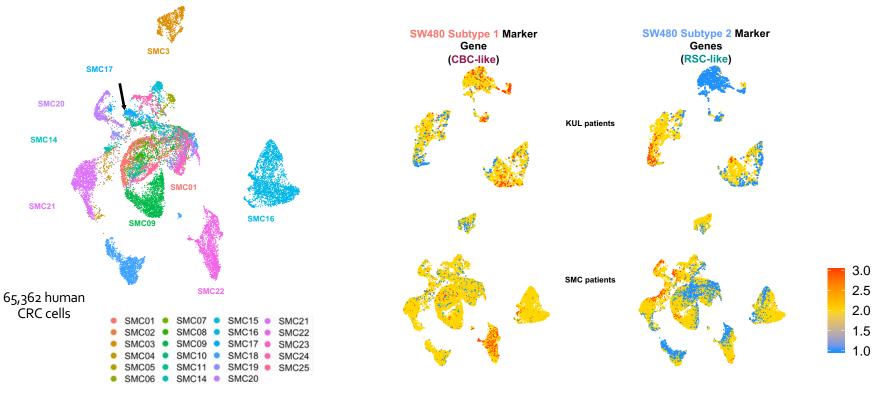


Modeling Colon Cancer Stem Cell Heterogeneity

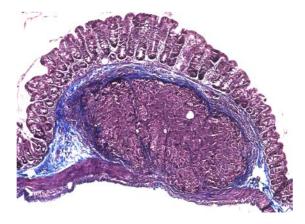



A "Switching Prediction"

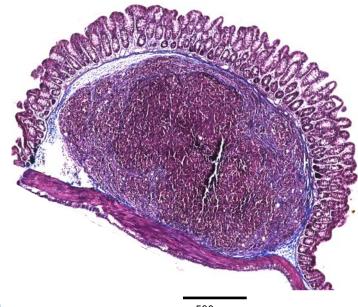
Rounded/CBC/CSC



Adherent/RSC/Wnt^{Hi-Mod}


scRNAseq Study: Human CRC tumors are Heterogeneous

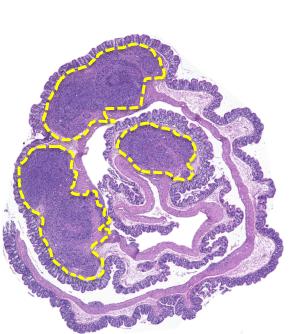
Lee H., et al. Nat Genet 2020 52:594-603. PMID: 32451460


RSC (Wnt^{Hi-Lo}) tumors are Fibrotic CBC/CSC tumors are Necrotic

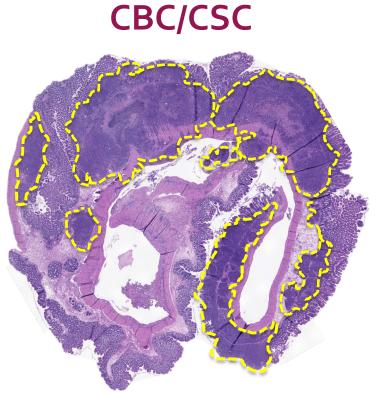
Adh/RSC

500 µm

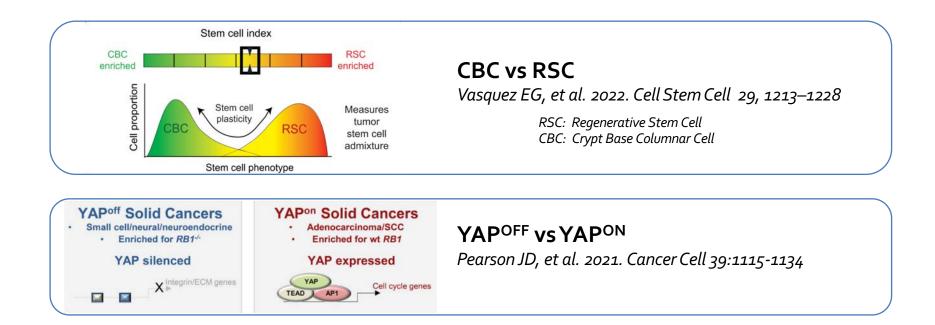
Rounded/CBC

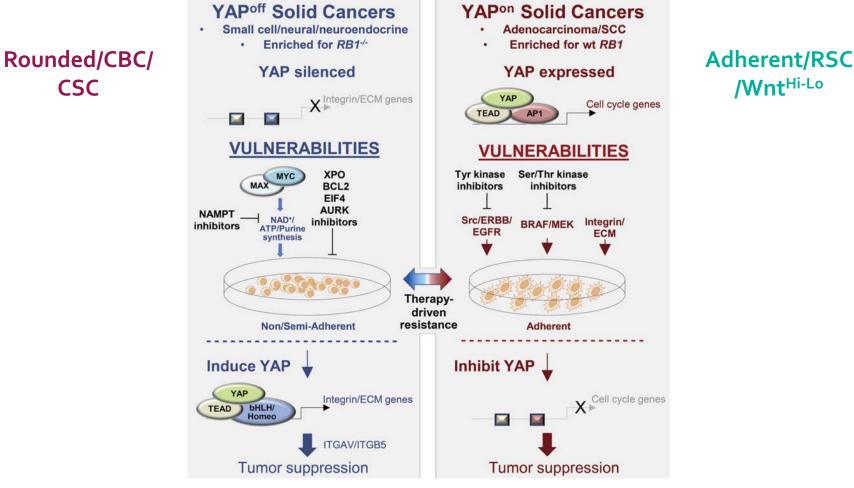

Trichrome staining (collagen fibers)

500 µm


Orthotopic Tumor Phenotypes

Normal Colon

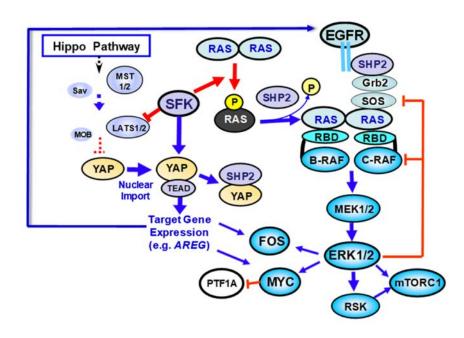



RSC (Wnt^{Hi-Lo})

New: Binary Classification of Colorectal Cancer

Binary Classification & Predicted Responses to Therapies

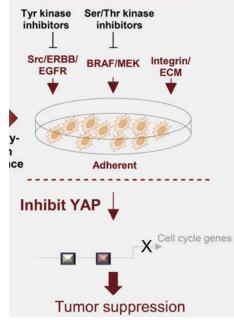
Pearson ...Wrana, Goodrich, Bremner et al. 2021. Cancer Cell


Binary Classification & Predicted Responses to Therapies

MDPI

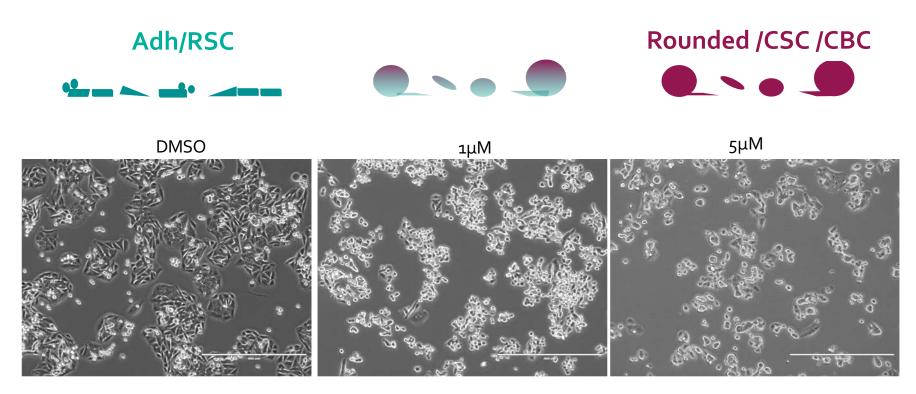
Receive Crosstalk between KRAS, SRC and YAP Signaling in Pancreatic Cancer: Interactions Leading to Aggressive Disease and Drug Resistance

Enrique Rozengurt 1,*3 and Guido Eibl 20


YAP^{on} Solid Cancers

- Adenocarcinoma/SCC
- Enriched for wt RB1

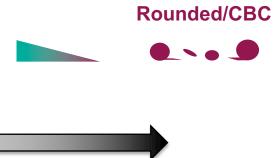
YAP expressed


VULNERABILITIES

Adherent/RSC /Wnt^{Hi-Lo}

Pearson ...Wrana, Goodrich, Bremner et al. 2021. Cancer Cell

Dasatinib treatment converts Adh/CBC to R/CBC phenotypes



Dasatinib, 3d Rx

unpublished data

Dasatinib Rx of *in vitro* Adh/RSC cells triggers colon cancer stem cell "switching"

Gene Name	Decreased Expression	Increased Expression	
SAA2	-4.0		-
SAA1	-3.2		
MALL	-1.6		
MSX1	-1.3		Adherent/RSC
LIMS1	-1.3		_
METTL9	-1.2		
ANO1	-1.2		
DCBLD2	-1.2		
TIAM1	-1.1		
DOCK9	-1.1		
PDP1	-1.1		
PDGFB	-1.1		
RHOBTB3	-0.8		Chemo ⁻
MED13L		0.8	
NR4A1		1.0	
KIAA1549		1.1	
CEMIP ₂		1.1	
ERVMER34-1		1.2	
FOXC1		1.5	
CST1		1.8	
RASL11B		1.9	
FAM178B		2.0	
SYTL3		2.1	
VIL1		2.4	
SEMA ₃ F		2.5	
FSTL4		5.6	

Chemotherapy?

unpublished data

Summary

Colorectal Cancer Stem Cell Subtypes and Tumor Microenvironments

Shared Resources

<u>Genomics Research & Tech. Hub</u> Melanie Oakes Jenny Wu

<u>Experimental Tissue Resource</u> Rob Edwards Delia Tifrea Kehui Wang

<u>Optical Biology Core</u> Adeela Syed Jennifer Atwood

Waterman Group

Dr. Linzi Hosohama

Dr. George Chen

Sonia Park Madeleine Duong Dr. Amber Habowski Kai Kessenbrock Kevin Nee

CaSB@UCI

John Lowengrub Arthur Lander Rick Van Etten Anand Ganesan **Dr. Mary Lee**

Marcus Seldin Cassandra Van

CaSB@UCI Cancer Systems Biology at UC Irvine

CHAO FAMILY COMPREHENSIVE CANCER CENTER University of California, Irvine

UC Irvine

Center for Complex Biological Systems